• 제목/요약/키워드: seismic action

검색결과 183건 처리시간 0.022초

Interaction of internal forces of exterior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Zhisheng
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.197-217
    • /
    • 2012
  • Detailed analysis of internal forces of exterior beam-column joints of RC frames under seismic action is reported in this paper. A formula is derived for calculating the average joint shear from the column shears, and a formula is proposed to estimate torque in eccentric joints induced by seismic action. Average joint shear stress and strain are defined consistently for exterior joints, which can be used to establish joint shear constitutive relationship. Numerical results of shear, bending moment and torque in joints induced by seismic action are presented for a pair of concentric and eccentric exterior connections extracted from a seismically designed RC frame, and two sections located at the levels of beam bottom and top reinforcement, respectively, are identified as the critical joint sections for evaluating seismic joint behavior. A simplified analysis of the effects of joint shear and torque on the flexural strengths of the critical joint sections is made for the two connections extracted from the frame, and the results indicate that joint shear and torque induced by a strong earthquake may lead to "joint-hinging" mechanism of seismically designed RC frames.

Confinement effect on the behavior factor of dual reinforced concrete moment-resisting systems with shear walls

  • Alireza Habibi;Mehdi Izadpanah;Yaser Rahmani
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.781-791
    • /
    • 2023
  • Lateral pressure plays a significant role in the stress-strain relationship of compressed concrete. Concrete's internal cracking resistance, ultimate strain, and axial strength are improved by confinement. This phenomenon influences the nonlinear behavior of reinforced concrete columns. Utilizing behavior factors to predict the nonlinear seismic responses of structures is prevalent in seismic codes, and this factor plays a vital role in the seismic responses of structures. This study aims to evaluate the confining action on the behavior factor of reinforced concrete moment resisting frames (RCMRFs) with shear walls (SWRCMRFs). To this end, a diverse range of mid-rise SW-RCMRFs was initially designed based on the Iranian national building code criteria. Second, the stress-strain curve of each element was modeled twice, both with and without the confinement phenomenon. Each frame was then subjected to pushover analysis. Finally, the analytical behavior factors of these frames were computed and compared to the Iranian seismic code behavior factor. The results demonstrate that confining action increased the behavior factors of SW-RCMRFs by 7-12%.

Seismic behavior of deep-sea pipeline after global buckling under active control

  • Jianshuo Wang;Tinghao Meng;Zechao Zhang;Zhihua Chen;Hongbo Liu
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.261-267
    • /
    • 2024
  • With the increase in the exploitation depth of offshore oil and gas, it is possible to control the global buckling of deep-sea pipelines by the snake lay method. Previous studies mainly focused on the analysis of critical buckling force and critical temperature of pipelines under the snake-like laying method, and pipelines often suffer structural failure due to seismic disasters during operation. Therefore, seismic action is a necessary factor in the design and analysis of submarine pipelines. In this paper, the seismic action of steel pipes in the operation stage after global buckling has occurred under the active control method is analyzed. Firstly, we have established a simplified finite element model for the entire process cycle and found that this modeling method is accurate and efficient, solving the problem of difficult convergence of seismic wave and soil coupling in previous solid analysis, and improving the efficiency of calculations. Secondly, through parameter analysis, it was found that under seismic action, the pipe diameter mainly affects the stress amplitude of the pipeline. When the pipe wall thickness increases from 0.05 m to 0.09 m, the critical buckling force increases by 150%, and the maximum axial stress decreases by 56%. In the pipe soil interaction, the greater the soil viscosity, the greater the pipe soil interaction force, the greater the soil constraint on the pipeline, and the safer the pipeline. Finally, the pipeline failure determination formula was obtained through dimensionless analysis and verified, and it was found that the formula was accurate.

Influence of masonry infill on reinforced concrete frame structures' seismic response

  • Muratovic, Amila;Ademovic, Naida
    • Coupled systems mechanics
    • /
    • 제4권2호
    • /
    • pp.173-189
    • /
    • 2015
  • In reality, masonry infill modifies the seismic response of reinforced concrete (r.c.) frame structures by increasing the overall rigidity of structure which results in: increasing of total seismic load value, decreasing of deformations and period of vibration, therefore masonry infill frame structures have larger capacity of absorbing and dissipating seismic energy. The aim of the paper is to explore and assess actual influence of masonry infill on seismic response of r.c. frame structures, to determine whether it's justified to disregard masonry infill influence and to determine appropriate way to consider infill influence by design. This was done by modeling different structures, bare frame structures as well as masonry infill frame structures, while varying masonry infill to r.c. frame stiffness ratio and seismic intensity. Further resistance envelope for those models were created and compared. Different structures analysis have shown that the seismic action on infilled r.c. frame structure is almost always twice as much as seismic action on the same structure with bare r.c. frames, regardless of the seismic intensity. Comparing different models resistance envelopes has shown that, in case of lower stiffness r.c. frame structure, masonry infill (both lower and higher stiffness) increased its lateral load capacity, in average, two times, but in case of higher stiffness r.c. frame structures, influence of masonry infill on lateral load capacity is insignificant. After all, it is to conclude that the optimal structure type depends on its exposure to seismic action and its masonry infill to r.c. frame stiffness ratio.

교량의 비탄성 지진응답에 대한 아칭작용의 영향 (Arching Action Effect for Inelastic Seismic Responses of Bridge Structures)

  • 송종걸;남왕현
    • 대한토목학회논문집
    • /
    • 제29권2A호
    • /
    • pp.131-143
    • /
    • 2009
  • 지진하중과 같은 횡하중에 대하여 교량구조물의 아칭작용은 교대 사이의 상부구조에 의해 발생하며 이를 상부구조의 저항능력이라고도 한다. 교량구조물의 아칭작용의 크기는 경간의 수에 영향을 받으며 또한 상부구조, 교대와 교각의 연결조건 및 상부구조와 하부구조의 강성비에도 영향을 받는다. 프리캐스트 콘크리트 상자형 교량의 비탄성 지진응답에 대한 아칭작용의 영향을 분석하기 위하여 경간수에 따른 두 가지 종류의 예제교량(교량 SB와 교량 LB), 교각의 높이의 배열에 따른 세가지 종류(대칭, 비대칭)의 교량, 상부구조와 하부구조의 연결조건에 따른 세가지 교량(형식 A, B, C)등에 대한 구분을 조합하여 18가지 종류의 예제구조물을 작성하였으며, 이 예제구조물들에 대하여 역량스펙트럼해석, 비탄성 시간이력해석을 수행하여 지진응답을 비교하여 아칭작용의 영향을 분석하였다. 아칭작용의 영향(최대변위의 감소와 저항능력의 증가)은 교량 SB(short bridge)의 경우가 교량 LB(long bridge) 보다 크게 나타났으며 대칭교량의 경우가 비대칭교량에 비하여 크게 나타남을 알수 있었다.

다중거동 복합형 감쇠장치를 적용한 철골골조의 내진성능실험 (Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers)

  • 노지은;허석재;이상현
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effectiveness of a multi-action hybrid damper (MHD) composed of lead rubber bearing (LRB) and friction pad was verified in terms of seismic performance improvement of a frame structure. The LRB and the friction elements are connected in series, so the LRB governs the intial small deformation and the friction determines large deformation behavior. Cyclic loading tests were conducted by using a half scale steel frame structure with the MHD, and the results indicated that the structure became to have the stable trilinear hysteresis with large initial stiffness and first yielding due to the LRB, and the second yielding due to the friction. The MHD could significantly increase the energy dissipation capacity of the structure and the hysteresis curves obtained by tests were almost identical to the analytically estimated ones.

Seismic performance and its favorable structural system of three-tower suspension bridge

  • Zhang, Xin-Jun;Fu, Guo-Ning
    • Structural Engineering and Mechanics
    • /
    • 제50권2호
    • /
    • pp.215-229
    • /
    • 2014
  • Due to the lack of effective longitudinal constraint for center tower, structural stiffness of three-tower suspension bridge becomes less than that of two-tower suspension bridge, and therefore it becomes more susceptible to the seismic action. By taking a three-tower suspension bridge-the Taizhou Highway Bridge over the Yangtze River with two main spans of 1080 m as example, structural dynamic characteristics and seismic performance of the bridge is investigated, and the effects of cable's sag to span ratio, structural stiffness of the center tower, and longitudinal constraint of the girder on seismic response of the bridge are also investigated, and the favorable structural system is discussed with respect to seismic performance. The results show that structural response under lateral seismic action is more remarkable, especially for the side towers, and therefore more attentions should be paid to the lateral seismic performance and also the side towers. Large cable's sag, flexible center tower and the longitudinal elastic cable between the center tower and the girder are favorable to improve structural seismic performance of long-span three-tower suspension bridges.

Nonlinear seismic response of a masonry arch bridge

  • Sayin, Erkut
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.483-494
    • /
    • 2016
  • Historical structures that function as a bridge from past to present are the cultural and social reflections of societies. Masonry bridges are one of the important historical structures. These bridges are vulnerable against to seismic action. In this study, linear and non-linear dynamic analyses of historical Nadir Bridge are assessed. The bridge is modelled with three dimensional finite elements. For the seismic effect, artificial acceleration records are generated considering the seismic characteristics of the region where the bridge is located. Seismic response of the bridge is investigated.

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

Testing of rubber bearings for the dynamic damper of seismic isolated buildings

  • Melkumyan, Mikayel;Hakobyan, Alexander
    • Smart Structures and Systems
    • /
    • 제2권4호
    • /
    • pp.321-328
    • /
    • 2006
  • The paper describes the testing facilities and the methodology on testing of laminated rubber bearings envisaged for application in the system of Dynamic Damper (DD) of seismic isolated buildings, as well as the obtained results. For the first time in Armenia laminated rubber bearings were tested simultaneously under the action of horizontal shear force and vertical tension force. The test results have proven the possibility of using rubber bearings as elements subjected to tension due to action of the mass of DD. Also it was confirmed that the suggested structural concept of DD for reducing the displacements and shear forces of seismic isolation systems will have reliable behavior during the design level earthquakes.