• 제목/요약/키워드: segregated kinetic model

검색결과 2건 처리시간 0.014초

Combined Age and Segregated Kinetic Model for Industrial-scale Penicillin Fed-batch Cultivation

  • Wang Zhifeng;Lauwerijssen Maarten J. C.;Yuan Jingqi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권2호
    • /
    • pp.142-148
    • /
    • 2005
  • This paper proposes a cell age model for Penicillium chrysogenum fed-batch cultivation to supply a qualitative insight into morphology-associated dynamics. The average ages of the segregated cell populations, such as growing cells, non-growing cells and intact productive cells, were estimated by this model. A combined model was obtained by incorporating the aver-age ages of the cell sub-populations into a known but modified segregated kinetic model from literature. For simulations, no additional effort was needed for parameter identification since the cell age model has no internal parameters. Validation of the combined model was per-formed by 20 charges of industrial-scale penicillin cultivation. Meanwhile, only two charge-dependent parameters were required in the combined model among approximately 20 parameters in total. The model is thus easily transformed into an adaptive model for a further application in on-line state variables prediction and optimal scheduling.

Modeling on Hydrogen Effects for Surface Segregation of Ge Atoms during Chemical Vapor Deposition of Si on Si/Ge Substrates

  • Yoo, Kee-Youn;Yoon, Hyunsik
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.275-278
    • /
    • 2017
  • Heterogeneous semiconductor composites have been widely used to establish high-performance microelectronic or optoelectronic devices. During a deposition of silicon atoms on silicon/germanium compound surfaces, germanium (Ge) atoms are segregated from the substrate to the surface and are mixed in incoming a silicon layer. To suppress Ge segregation to obtain the interface sharpness between silicon layers and silicon/germanium composite layers, approaches have used silicon hydride gas species. The hydrogen atoms can play a role of inhibitors of silicon/germanium exchange. However, there are few kinetic models to explain the hydrogen effects. We propose using segregation probability which is affected by hydrogen atoms covering substrate surfaces. We derived the model to predict the segregation probability as well as the profile of Ge fraction through layers by using chemical reactions during silicon deposition.