• Title/Summary/Keyword: segment-based approach

검색결과 152건 처리시간 0.018초

스마트 전시 환경에서 프로모션 적용 사례 및 분석 (Case Analysis of the Promotion Methodologies in the Smart Exhibition Environment)

  • 문현실;김남희;김재경
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.171-183
    • /
    • 2012
  • 세계가 급변하고 시시각각 발전하는 기술 속에서 전시 산업은 국가와 기업의 중요한 홍보 수단으로 부각되고 있다. 특히, 전시회에 참여하는 참여업체는 상품 또는 서비스를 전시하고 메시지를 전달하기 위해 마련된 개별 전시공간을 통해 기업들과 소비자들에게 단기간에 신제품과 신기술에 대한 정보를 제공할 수 있으며 국내외 시장의 욕구와 추세변화 및 경쟁업체들에 대한 정보를 파악할 수 있다. 참여업체들은 이러한 참가 목적의 달성을 위해 다양한 프로모션을 계획하고 실행하며 프로모션 정보를 참관객에게 실시간으로 제공할 수 있는 스마트 전시 환경의 구축은 이전보다 다양한 프로모션 기법의 적용 및 실행을 가능하게 하였다. 하지만, 이러한 스마트 전시 환경의 발전에도 불구하고 현재 실행되고 있는 프로모션은 참관객의 욕구나 목표에 대한 이해가 부족한 상태에서 무차별적인 매스마케팅 형태로 진행되어 그 본래의 목적을 상실하고 있다. 따라서, 본 연구에서는 참여업체의 차별화된 프로모션의 계획과 실행을 위해 기존에 널리 사용되는 마케팅 기법인 STP 전략의 프로세스를 도입하여 스마트 전시 환경에서 프로모션에 적합한 참관객을 자동적으로 선정하여 프로모션 정보를 제공하는 시스템을 제안하였다. 특히, 본 연구에서는 다음과 같은 스마트 전시회의 특성을 고려한다. 먼저, 전시회는 전시업체가 관람객과 상호작용하기 위해 모인 일시적이고 시간에 민감한 시장이다. 따라서, 불충분한 기존 참관객의 정보를 이용하는 것이 아닌 신규 참관객 분석의 관점에서 서비스를 제공할 수 있어야 한다. 두 번째로, 스마트 전시 환경에서는 참관객의 정보를 실시간으로 획득할 수 있다는 장점이 있는 반면에 데이터의 분석 및 서비스의 제공이 실시간으로 이루어져야 한다. 마지막으로, 참관객이 스마트 전시 환경에서 만들어 내는 데이터를 활용하는 기법이 필요하다. 스마트 전시 환경에서는 유용한 데이터를 실시간으로 획득할 수 있어 참관객이 전시회 내에서 하는 활동을 분석하는 행위적 세분화에 근거한 접근방식이 필요하다. 이러한 특성을 고려하여 본 연구에서는 제안한 시스템을 실제 전시회에 파일럿 시스템 형태로 적용하여 참관객을 실시간으로 분류 및 분석하고 각 메시지에 대한 성과를 측정하는 실험을 진행하였다. 그 결과, 전시 참관객의 행동 패턴을 4가지로 분류하여 각 군집별 특성을 프로모션 메시지의 성과로 측정하여 그에 적합한 프로모션 전략을 도출하였다. 이러한 프로모션 전략은 실제 전시 참여업체의 프로모션 기획 및 실행에 중요한 전략적 도구로 사용되어 프로모션 성과를 높일 수 있을 것으로 기대된다.

사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안 (A Proposal of a Keyword Extraction System for Detecting Social Issues)

  • 정다미;김재석;김기남;허종욱;온병원;강미정
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.1-23
    • /
    • 2013
  • 융합 R&D가 추구해야 할 바람직한 방향은 이종 기술 간의 결합에 의한 맹목적인 신기술 창출이 아니라, 당면한 주요 문제를 해결함으로써 사회적 니즈를 충족시킬 수 있는 기술을 개발하는 것이다. 이와 같은 사회문제 해결형 기술 R&D를 촉진하기 위해서는 우선 우리 사회에서 주요 쟁점이 되고 있는 문제들을 선별해야 한다. 그런데 우선적이고 중요한 사회문제를 분별하기 위해 전문가 설문조사나 여론조사 등 기존의 사회과학 방법론을 사용하는 것은 참여자의 선입견이 개입될 수 있고 비용이 많이 소요된다는 한계를 지닌다. 기존의 사회과학 방법론이 지닌 문제점을 보완하기 위하여 본 논문에서는 사회적 이슈를 다루고 있는 대용량의 뉴스기사를 수집하고 통계적인 기법을 통하여 사회문제를 나타내는 키워드를 추출하는 시스템의 개발을 제안한다. 2009년부터 최근까지 3년 동안 10개 주요 언론사에서 생산한 약 백 30만 건의 뉴스기사에서 사회문제를 다루는 기사를 식별하고, 한글 형태소 분석, 확률기반의 토픽 모델링을 통해 사회문제 키워드를 추출한다. 또한 키워드만으로는 정확한 사회문제를 파악하기 쉽지 않기 때문에 사회문제와 연관된 키워드와 문장을 찾아서 연결하는 매칭 알고리즘을 제안하다. 마지막으로 사회문제 키워드 비주얼라이제이션 시스템을 통해 시계열에 따른 사회문제 키워드를 일목요연하게 보여줌으로써 사회문제를 쉽게 파악할 수 있도록 하였다. 특히 본 논문에서는 생성확률모델 기반의 새로운 매칭 알고리즘을 제안한다. 대용량 뉴스기사로부터 Latent Dirichlet Allocation(LDA)와 같은 토픽 모델 방법론을 사용하여 자동으로 토픽 클러스터 세트를 추출할 수 있다. 각 토픽 클러스터는 연관성 있는 단어들과 확률값으로 구성된다. 그리고 도메인 전문가는 토픽 클러스터를 분석하여, 각 토픽 클러스터의 레이블을 결정하게 된다. 이를 테면, 토픽 1 = {(실업, 0.4), (해고, 0.3), (회사, 0.3)}에서 토픽 단어들은 실업문제와 관련있으며, 도메인 전문가는 토픽 1을 실업문제로 레이블링 하게 되고, 이러한 토픽 레이블은 사회문제 키워드로 정의한다. 그러나 이와 같이 자동으로 생성된 사회문제 키워드를 분석하여 현재 우리 사회에서 어떤 문제가 발생하고 있고, 시급히 해결해야 될 문제가 무엇인지를 파악하기란 쉽지 않다. 따라서 제안된 매칭 알고리즘을 사용하여 사회문제 키워드를 요약(summarization)하는 방법론을 제시한다. 우선, 각 뉴스기사를 문단(paragraph) 단위로 세그먼트 하여 뉴스기사 대신에 문단 세트(A set of paragraphs)를 가지게 된다. 매칭 알고리즘은 각 토픽 클러스터에 대한 각 문단의 확률값을 측정하게된다. 이때 토픽 클러스터의 단어들과 확률값을 이용하여 토픽과 문단이 얼마나 연관성이 있는지를 계산하게 된다. 이러한 과정을 통해 각 토픽은 가장 연관성이 있는 문단들을 매칭할 수 있게 된다. 이러한 매칭 프로세스를 통해 사회문제 키워드와 연관된 문단들을 검토함으로써 실제 우리 사회에서 해당 사회문제 키워드와 관련해서 구체적으로 어떤 사건과 이슈가 발생하는 지를 쉽게 파악할 수 있게 된다. 또한 매칭 프로세스와 더불어 사회문제 키워드 가시화를 통해 사회문제 수요를 파악하려는 전문가들은 웹 브라우저를 통해 편리하게 특정 시간에 발생한 사회문제가 무엇이며, 구체적인 내용은 무엇인지를 파악할 수 있으며, 시간 순서에 따른 사회이슈의 변동 추이와 그 원인을 알 수 있게 된다. 개발된 시스템을 통해 최근 3년 동안 국내에서 발생했던 다양한 사회문제들을 파악하였고 개발된 알고리즘에 대한 평가를 수행하였다(본 논문에서 제안한 프로토타입 시스템은 http://dslab.snu.ac.kr/demo.html에서 이용 가능함. 단, 구글크롬, IE8.0 이상 웹 브라우저 사용 권장).