• Title/Summary/Keyword: segment compression

검색결과 81건 처리시간 0.025초

로컬영역의 정합기법 및 MCTF를 이용한 디지털 홀로그램 부호화 기술 (Digital Hologram Coding Technique using Block Matching of Localized Region and MCTF)

  • 서영호;최현준;김동욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.415-416
    • /
    • 2006
  • In this paper, we proposed a new coding technique of digital hologram video using 3D scanning method and video compression technique. The proposed coding consists of capturing a digital hologram to separate into RGB color space components, localization by segmenting the fringe pattern, frequency transform using $M{\tiems}N$ (segment size) 2D DCT (2 Dimensional Discrete Cosine Transform) for extracting redundancy, 3D scan of segment to form a video sequence, motion compensated temporal filtering (MCTF) and modified video coding which uses H.264/AVC.

  • PDF

분할영역의 3차원 스캐닝을 이용한 홀로그래픽 비디오 신호의 효율적인 부호화 기술 (An Efficient Coding Technique of Holographic Video Signal using 3D Segment Scanning)

  • 서영호;최현준;김동욱
    • 한국통신학회논문지
    • /
    • 제32권2C호
    • /
    • pp.132-140
    • /
    • 2007
  • 본 논문에서는 디지털화된 형태로 취득 및 저장된 홀로그램 신호를 부호화하는 새로운 기술을 제안한다. 디지털 홀로그램의 독특한 특성을 파악하여 적절한 형태의 데이터로 변환한 후에 현재 널리 사용되고 있는 표준 압축 기술들에 적용하고자 한다. 전처리과정 이후에 부호화를 위해 추출된 홀로그램은 위치적인 다시점 특성을 이용하여 분할된다. 분할된 홀로그램은 2차원의 여러 시점에서 객체를 촬영한 것과 유사한 특성을 보인다. 시각적으로 잡음과 유사한 형태로 관찰되는 홀로그램의 회절 패턴은 그 자체로써 압축에 이용하기 어렵다. 따라서 홀로그램 생성 원리와 유사하면서 고속 변환이 가능한 2차원 DCT (Discrete Cosine Transform)를 이용하여 분할된 홀로그램을 주파수 변환한다. 주파수 변환된 분할 영역들은 시간적 및 공간적 상관도에 따라서 3차원 스캔 과정을 거치면서 하나의 비디오 스트림으로 구성된다. 비디오 스트림의 한 프레임에 해당하는 분할된 영역들은 다양한 범위를 가지는 계수들로 구성되는데 이를 재구성한 후에 부호화 알고리즘을 이용하여 압축한다. 실험 결과를 살펴보면 제안한 알고리즘은 기존의 기술에 비해서 16배 이상의 높은 압축율에서 더 좋은 복원 성능을 보였다.

견갑대 운동 기능장애에 대한 치료 접근 (Treatment approach for the movement dysfunction of the shoulder girdle)

  • 장준혁;이현옥;구봉오
    • The Journal of Korean Physical Therapy
    • /
    • 제15권4호
    • /
    • pp.412-430
    • /
    • 2003
  • Functional stability is dependent on integrated local and global muscle function. Movement dysfunction can present as a local and global problem, though both frequently occur together. To good understand how movement induces pain syndrome, the optimal actions and interaction of the multiple anatomic and functional systems involved in motion must be considered. Minor alterations in the precision of movement cause microtrauma and, if allowed to continue, will cause macrotrauma and pain. These alteration of the movement result in the development of compensatory movement and movement impairment. Muscle that become tight tend to pull the body segment to which they are attached, creating postural deviation. The antagonistic muscles may become weak and allow postural deviations due to lack of balanced support. Both hypertonic and inhibited muscles will cause an alteration of the distribution of pressure over the joint(s) that they cross and, thus, may not only result from muscle dysfunction, but produce joint dysfunction as well. Alteration of the shoulder posture and movement dysfunction may sometimes result in compression of neurovascular structures in the shoulder and arm. There is a clear link between reduced proprioceptive input, altered motor unit recruitment and the neurovascular compression. This report start with understanding of the impaired alignment, movement patterns and neuromuscular compression of the shoulder girdle by movement impairment to approach method of the movement dysfunction.

  • PDF

불안정성 흉·요추부 골절에 대한 단 분절 척추경 나사못 고정술 및 추체 보강 성형술 - 예 비 보 고 - (Short Segment Pedicle Screw Fixation with Augmented Intra-Operative Vertebroplasty in Unstable Thoraco-Lumbar Fracture - Preliminary Report -)

  • 김영우;오성한;윤도흠;진동규;조용은;김영수
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권11호
    • /
    • pp.1271-1277
    • /
    • 2001
  • Objectives : Since vertebroplasty has been introduced, we performed short segment pedicle screw fixation with augmented intra-operative vertebroplasty in patients with unstable thoraco-lumbar fracture. Our intentions are to demonstrate the efficacy and indication of this new technique compare to conventional methods. Material and Methods : The surgery comprised of pedicle screw fixations on one level above and below the fracture site, and the fractured level itself, if pedicle is intact, and intra-operative vertebroplasty under the fluoroscopic guide with in-situ postero-lateral bone graft. Also, in cases of bone apposition, we removed those with small impactor through a transfascetal route. During the last 2 years, we performed in seven(7) unstable thoraco-lumbar fracture patients who consisted of two different characteristics, those four(4) with primary or secondary osteoporosis and three(3) of young and very healthy. All patients were followed clinically by A.S.I.A. score and radiography. Results : Mean follow up period was 14 months. We observed well decompressed state via transfascetal route in cases of bone fragments apposition and no hardware pullout in osteoporotic cases, no poly-methyl-methacrylate (PMMA) leakage through the fracture sites into the spinal canal, and no kyphotic deformities in both cases during follow-up periods. All patients demonstrated solid bony fusion except one following osteoporotic compression fracture on other sites. Conclusions : In the management of unstable thoraco-lumbar fracture, we believe that this short segment pedicle screw fixation with augmented intra-operative vertebroplasty reduce the total length or levels of pedicle screw fixation without post-operative kyphotic deformity.

  • PDF

Study on mechanical behaviors of large diameter shield tunnel during assembling

  • Feng, Kun;Peng, Zuzhao;Wang, Chuang;He, Chuan;Wang, Qianshen;Wang, Wei;Cao, Songyu;Wang, Shimin;Zhang, Haihua
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.623-635
    • /
    • 2018
  • In order to study the mechanical behavior of shield tunnel segments during assembly stage, the in-situ tests and FDM numerical simulation were conducted based on the Foguan Shiziyang Tunnel with large cross-section. Analysis for the load state of the assembling segments in different assembly steps as well as the investigation for the changing of inner forces and longitudinal stress of segments with assembling steps were carried out in this paper. By comparing the tested results with the simulated results, the conclusions and suggestions could be drawn as follows: (1) It is the most significant for the effects on axial force and bending moment caused by the assembly of adjacent segment, followed by the insertion of key segment while the effects in the other assembly steps are relative smaller. With the increasing value of axial force, the negative bending moment turns into positive and remains increasing in most monitored sections, while the bending moment of segment B1and B6 are negative and keeping increasing; (2) The closer the monitored section to the adjacent segments or the key segment, the more significant the internal forces response, and the monitored effects of key segment insertion are more obvious than that of calculation; (3) The axial forces are all in compression during assembling and the monitored values are about 1.5~1.75 times larger than the calculated values, and the monitored values of bending moment are about 2 times the numerical calculation. The bending moment is more sensitive to the segments assembly process compared with axial force, and it will result in the large bending moment of segments during assembling when the construction parameters are not suitable or the assembly error is too large. However, the internal forces in assembly stage are less than those in normal service stage; (4) The distribution of longitudinal stress has strong influence on the changing of the internal forces. The segment side surface and intrados in the middle of two adjacent jacks are the crack-sensitive positions in the early assembly stage, and subsequently segment corners far away from the jacks become the crack-sensitive parts either.

초음파 영상 특성을 이용한 실시간 초음파 영역 추출방법 (Real-time Ultrasound Contexts Segmentation Based on Ultrasound Image Characteristic)

  • 최성진;이민우
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권5호
    • /
    • pp.179-188
    • /
    • 2019
  • In ultrasound telemedicine, it is important to reduce the size of the data by compressing the ultrasound image when sending it. Ultrasound images can be divided into image context and other information consisting of patient ID, date, and several letters. Between them, ultrasound context is very important information for diagnosis and should be securely preserved as much as possible. In several previous papers, ultrasound compression methods were proposed to compress ultrasound context and other information into different compression parameters. This ultrasound compression method minimized the loss of ultrasound context while greatly compressing other information. This paper proposed the method of automatic segmentation of ultrasound context to overcome the limitation of the previously described ultrasound compression method. This algorithm was designed to robust for various ultrasound device and to enable real-time operation to maintain the benefits of ultrasound imaging machine. The operation time of extracting ultrasound context through the proposed segmentation method was measured, and it took 311.11 ms. In order to optimize the algorithm, the ultrasound context was segmented with down sampled input image. When the resolution of the input image was reduced by half, the computational time was 126.84 ms. When the resolution was reduced by one-third, it took 45.83 ms to segment the ultrasound context. As a result, we verified through experiments that the proposed method works in real time.

Effect of hybrid fibers on flexural performance of reinforced SCC symmetric inclination beams

  • Zhang, Cong;Li, Zhihua;Ding, Yining
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.209-220
    • /
    • 2018
  • In order to evaluate the effect of hybrid fibers on the flexural performance of tunnel segment at room temperature, twelve reinforced self-consolidating concrete (SCC) symmetric inclination beams containing steel fiber, macro polypropylene fiber, micro polypropylene fiber, and their hybridizations were studied under combined loading of flexure and axial compression. The results indicate that the addition of mono steel fiber and hybrid fibers can enhance the ultimate bearing capacity and cracking behavior of tested beams. These improvements can be further enhanced along with increasing the content of steel fiber and macro PP fiber, but reduced with the increase of the reinforcement ratio of beams. The hybrid effect of steel fiber and macro PP fiber was the most obvious. However, the addition of micro PP fibers led to a degradation to the flexural performance of reinforced beams at room temperature. Meanwhile, the hybrid use of steel fiber and micro polypropylene fiber didn't present an obvious improvement to SCC beams. Compared to micro polypropylene fiber, the macro polypropylene fiber plays a more prominent role on affecting the structural behavior of SCC beams. A calculation method for ultimate bearing capacity of flexural SCC symmetric inclination beams at room temperature by taking appropriate effect of hybrid fibers into consideration was proposed. The prediction results using the proposed model are compared with the experimental data in this study and other literature. The results indicate that the proposed model can estimate the ultimate bearing capacity of SCC symmetric inclination beams containing hybrid fibers subjected to combined action of flexure and axial compression at room temperature.

Segmental Deformity Correction after Balloon Kyphoplasty in the Osteoporotic Vertebral Compression Fracture

  • Lee, Jung-Hoon;Kwon, Jeong-Taik;Kim, Young-Baeg;Suk, Jong-Sik
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권5호
    • /
    • pp.371-376
    • /
    • 2007
  • Objective : Balloon kyphoplasty can effectively relieve the symptomatic pain and correct the segmental deformity of osteoporotic vertebral compression fractures. While many articles have reported on the effectiveness of the procedure, there has not been any research on the factors affecting the deformity correction. Here, we evaluated both the relationship between postoperative pain relief and restoration of the vertebral height, and segmental kyphosis, as well as the various factors affecting segmental deformity correction after balloon kyphoplasty. Methods : Between January 2004 and December 2006, 137 patients (158 vertebral levels) underwent balloon kyphoplasty. We analyzed various factors such as the age and sex of the patient, preoperative compression ratio, kyphotic angle of compressed segment, injected PMMA volume, configuration of compression, preoperative bone mineral density (BMD) score, time interval between onset of symptom and the procedure, visual analogue scale (VAS) score for pain rating and surgery-related complications. Results : The mean postoperative VAS score improvement was $4.93{\pm}0.17$. The mean postoperative height restoration rate was $17.8{\pm}1.57%$ and the kyphotic angle reduction was $1.94{\pm}0.38^{\circ}$. However, there were no significant statistical correlations among VAS score improvement, height restoration rate, and kyphotic angle reduction. Among the various factors, the configuration of the compressed vertebral body (p=0.002) was related to the height restoration rate and the direction of the compression (p=0.006) was related with the kyphotic angle reduction. The preoperative compression ratio (p=0.023, p=0.006) and injected PMMA volume (p<0.001, p=0.035) affected both the height restoration and kyphotic angle reduction. Only the preoperative compression ratio was found to be as an independent affecting factor (95% CI : 1.064-5.068). Conclusion : The two major benefits of balloon kyphoplasty are immediate pain relief and local deformity correction, but segmental deformity correction achieved by balloon kyphoplasty does not result in additional pain relief. Among the factors that were shown to affect the segmental deformity correction, configuration of the compressed vertebral body, direction of the most compressed area, and preoperative compression ratio were not modifiable. However, careful preoperative consideration about the modifiable factor, the PMMA volume to inject, may contribute to the dynamic correction of the segmental deformity.

A Novel Transmission Scheme for Compressed Health Data Using ISO/IEEE11073-20601

  • Kim, Sang-Kon;Kim, Tae-Kon;Lee, Hyungkeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5855-5877
    • /
    • 2017
  • In view of personal health and disease management based on cost effective healthcare services, there is a growing need for real-time monitoring services. The electrocardiogram (ECG) signal is one of the most important of health information and real-time monitoring of the ECG can provide an efficient way to cope with emergency situations, as well as assist in everyday health care. In this system, it is essential to continuously collect and transmit large amount of ECG data within a given time and provide maximum user convenience at the same time. When considering limited wireless capacity and unstable channel conditions, appropriate signal processing and transmission techniques such as compression are required. However, ISO/IEEE 11073 standards for interoperability between personal health devices cannot properly support compressed data transmission. Therefore, in the present study, the problems for handling compressed data are specified and new extended agent and manager are proposed to address the problems while maintaining compatibility with existing devices. Extended devices have two PM-stores enabling compression and a novel transmission scheme. A variety of compression techniques can be applied; in this paper, discrete cosine transformation (DCT) is used. And the priority of information after DCT compression enables new transmission techniques for performance improvement. The performance of the compressed signal and the original uncompressed signal transmitted over the noisy channel are compared in terms of percent root mean square difference (PRD) using our simulation results. Our transmission scheme shows a better performance and complies with 11073 standards.

상 경부 대상포진에 병발한 안면신경 마비 -증례 보고- (Facial Palsy Accompanied with Herpes Zoster on the Cervical Dermatome -A case report-)

  • 윤덕미;김창호;이윤우;남용택
    • The Korean Journal of Pain
    • /
    • 제10권1호
    • /
    • pp.97-100
    • /
    • 1997
  • We treated a 56 year old male ailing of painful herpetic eruption on his 2nd, 3rd and 4th left cervical spinal segment. On the 18th day, patient also suffered an abrupt left facial palsy, accompanied with ongoing postherpetic neuralgia even though the skin eruption had been cured. This patient visited our pain clinic on his 46th day of illness and was teated with continuous cervical epidural block for 9 days, and stellate ganglion block plus oral analgesics and antidepressant for 12 days. The combination of treatments resulted in marked improvement of facial palsy and postherpetic neuralgia. A possible explanation of facial palsy accompanied with herpes zoster on cervical spinal segment could be related to Hunt's hypothesis that geniculate ganglion forms a chain connecting the high cervical ganglion below. Another possibility may be related to a compression injury of the facial nerve by long-term severe edema on the soft tissue of the face, the periauricular area and parotid gland around the facial nerve, and edema on the facial nerve itself emerging out from the cranium.

  • PDF