• 제목/요약/키워드: segment based classification

검색결과 124건 처리시간 0.028초

Mapping of Vegetation Cover using Segment Based Classification of IKONOS Imagery

  • Cho, Hyun-Kook;Lee, Woo-Kyun;Lee, Seung-Ho
    • The Korean Journal of Ecology
    • /
    • 제26권2호
    • /
    • pp.75-81
    • /
    • 2003
  • This study was performed to prove if the high resolution satellite imagery of IKONOS is suitable for preparing digital vegetation map which is becoming increasingly important in ecological science. Seven classes for forest area and five classes for non-forest area were taken for classification. Three methods, such as the pixel based classification, the segment based classification with majority principle, and the segment based classification with maximum likelihood, were applied to classify IKONOS imagery taken in April 2000. As a whole, the segment based classification shows better performance in classifying the high resolution satellite imagery of IKONOS. Through the comparison of accuracies and kappa values of the above 3 classification methods, the segment based classification with maximum likelihood was proved to be the best suitable for preparing the vegetation map with the help of IKONOS imagery. This is true not only from the viewpoint of accuracy, but also for the purpose of preparing a polygon based vegetation map. On the basis of the segment based classification with the maximum likelihood, a digital vegetation map in which each vegetation class is delimitated in the form of a polygon could be prepared.

Method for classification and delimitation of forest cover using IKONOS imagery

  • Lee, W.K.;Chong, J.S.;Cho, H.K.;Kim, S.W.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.198-200
    • /
    • 2003
  • This study proved if the high resolution satellite imagery of IKONOS is suitable for preparing digital forest cover map. Three methods, the pixel based classification with maximum likelihood (PML), the segment based classification with majority principle(SMP), and the segment based classification with maximum likelihood(SML), were applied to classify and delimitate forest cover of IKONOS imagery taken in May 2000 in a forested area in the central Korea. The segment-based classification was more suitable for classifying and deliminating forest cover in Korea using IKONOS imagery. The digital forest cover map in which each class is delimitated in the form of a polygon can be prepared on the basis of the segment-based classification.

  • PDF

Segment-based Image Classification of Multisensor Images

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제28권6호
    • /
    • pp.611-622
    • /
    • 2012
  • This study proposed two multisensor fusion methods for segment-based image classification utilizing a region-growing segmentation. The proposed algorithms employ a Gaussian-PDF measure and an evidential measure respectively. In remote sensing application, segment-based approaches are used to extract more explicit information on spatial structure compared to pixel-based methods. Data from a single sensor may be insufficient to provide accurate description of a ground scene in image classification. Due to the redundant and complementary nature of multisensor data, a combination of information from multiple sensors can make reduce classification error rate. The Gaussian-PDF method defines a regional measure as the PDF average of pixels belonging to the region, and assigns a region into a class associated with the maximum of regional measure. The evidential fusion method uses two measures of plausibility and belief, which are derived from a mass function of the Beta distribution for the basic probability assignment of every hypothesis about region classes. The proposed methods were applied to the SPOT XS and ENVISAT data, which were acquired over Iksan area of of Korean peninsula. The experiment results showed that the segment-based method of evidential measure is greatly effective on improving the classification via multisensor fusion.

Comparative Analysis of Supervised and Phenology-Based Approaches for Crop Mapping: A Case Study in South Korea

  • Ehsan Rahimi;Chuleui Jung
    • 대한원격탐사학회지
    • /
    • 제40권2호
    • /
    • pp.179-190
    • /
    • 2024
  • This study aims to compare supervised classification methods with phenology-based approaches, specifically pixel-based and segment-based methods, for accurate crop mapping in agricultural landscapes. We utilized Sentinel-2A imagery, which provides multispectral data for accurate crop mapping. 31 normalized difference vegetation index (NDVI) images were calculated from the Sentinel-2A data. Next, we employed phenology-based approaches to extract valuable information from the NDVI time series. A set of 10 phenology metrics was extracted from the NDVI data. For the supervised classification, we employed the maximum likelihood (MaxLike) algorithm. For the phenology-based approaches, we implemented both pixel-based and segment-based methods. The results indicate that phenology-based approaches outperformed the MaxLike algorithm in regions with frequent rainfall and cloudy conditions. The segment-based phenology approach demonstrated the highest kappa coefficient of 0.85, indicating a high level of agreement with the ground truth data. The pixel-based phenology approach also achieved a commendable kappa coefficient of 0.81, indicating its effectiveness in accurately classifying the crop types. On the other hand, the supervised classification method (MaxLike) yielded a lower kappa coefficient of 0.74. Our study suggests that segment-based phenology mapping is a suitable approach for regions like South Korea, where continuous cloud-free satellite images are scarce. However, establishing precise classification thresholds remains challenging due to the lack of adequately sampled NDVI data. Despite this limitation, the phenology-based approach demonstrates its potential in crop classification, particularly in regions with varying weather patterns.

단어 분류에 기반한 텍스트 영상 워터마킹 알고리즘 (An Algorithm for Text Image Watermarking based on Word Classification)

  • 김영원;오일석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권8호
    • /
    • pp.742-751
    • /
    • 2005
  • 본 논문은 단어 분류에 기반한 새로운 텍스트 영상 워터마킹 알고리즘을 제안한다. 간단한 특징을 이용하여 단어를 K개로 분류한다. 이웃한 몇 개의 단어들을 조합하여 세그먼트를 구성하고, 세그먼트에 속한 단어들의 부류에 의해 세그먼트 또한 분류된다. 각 세그먼트에 동일한 양의 신호가 삽입된다. 신호 삽입은 세그먼트 부류가 갖는 단어 간 공백의 통계값을 조작함으로써 이루어진다. 몇 가지 기준에 따라 기존 단어 이동 알고리즘과의 주관적인 비교가 제시된다.

QuickBird 위성영상을 이용한 수종분류에서 픽셀과 분할기반 분류방법의 정확도 비교 (A Comparison of Pixel- and Segment-based Classification for Tree Species Classification using QuickBird Imagery)

  • 정상영;임종수;신만용
    • 한국산림과학회지
    • /
    • 제100권4호
    • /
    • pp.540-547
    • /
    • 2011
  • 본 연구는 고해상도 위성영상인 QuickBird 영상을 이용한 픽셀 및 분할기반의 분류방법의 정확도를 비교하여 적합한 수종 분류방법을 선정하기 위해 수행하였다. 이를 위해 연구대상지인 충청북도 옥천군과 영동군의 산림을 대상으로 현지조사를 실시하여 총 398개 토지피복정보를 수집하였다. 총 14개의 토지 피복 등급(4개의 침엽수종과 7개의 활엽수종, 그리고 3개의 비산림지)으로 구분된 현지조사 자료를 훈련자료로 이용하였다. 픽셀기반 분류에 있어서 위성영상이 가지고 있는 원 화소값, tasseled cap 분석에 의한 3개의 지수, 그리고 주성분 분석을 통한 3개의 성분값을 이용한 3가지의 밴드조합 영상을 생성하여 분류정확도를 비교한 결과, 위성영상의 원 화소값을 이용한 분류 정확도가 가장 높은 것으로 평가되었다. 분할기반 분류에서는 3개의 축척계수에 따른 정확도를 비교한 결과, 축척계수 50%을 적용하였을 때 전체 정확도는 76%, 그리고 ${\hat{k}}$ 값은 0.74로 다른 축척계수에 의한 정확도보다 높은 것으로 나타났다. 결과적으로 QuickBird 영상의 원 화소값과 50%의 축척계수를 이용한 분할기반의 수종분류 결과가 정확도가 가장 높은 것으로 평가되었다.

심근허혈 진단을 위한 ST세그먼트 형태 분류 알고리즘 (ST Segment Shape Classification Algorithm for Making Diagnosis of Myocardial Ischemia)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제15권10호
    • /
    • pp.2223-2230
    • /
    • 2011
  • 심전도는 심근허혈, 부정맥, 심근경색과 같은 심장질환의 진단에 이용된다. 특히 심근허혈은 ST 세그먼트의 형태 변화가 나타나는데, 이러한 변화는 일시적으로 나타나며 특별한 증상을 동반하지 않는다. 따라서 지속적인 모니터링을 통해서 ST의 일시적인 변화를 검출하는 것이 매우 중요하다. 이에 본 연구에서는 심근허혈 진단을 위한 ST세그먼트 형태 분류 알고리즘을 제안한다. 이는 전처리 과정과 적응가변형 문턱치를 통해 R파와 각 특징점을 검출 한 후 S와 T파사이의 굴곡점으로부터 특정한 기울기 정보를 추출하여 ST의 기울기 기준점과 비교함으로써, 검출된 ST를 6가지 형태로 분류하는 방법이다. 개발된 알고리즘은 심전도로부터 ST 레벨 변화 구간을 검출하고, 검출된 구간에 대해서도 ST의 형태를 분류함으로써 심전도 레벨 변화뿐만 아니라 형태에 대한 정보도 제공한다. 제안한 알고리즘의 심근허혈 패턴 진단 성능을 평가하기 위해서 European ST 데이터베이스를 사용하였다. 성능 평가 결과 가장 높은 분류성공률은 99.4%이며, 낮은 성공률은 68.48%를 나타내었다.

인체측정자료의 사용성 제고를 위한 인체측정변수 분류 방법 (A Classification Method of Anthropometric Variables for Improved Usability of Anthropometric Data)

  • 유희천;신승우;류태범
    • 대한인간공학회지
    • /
    • 제23권3호
    • /
    • pp.13-24
    • /
    • 2004
  • Anthropometric data is a fundamental resource in developing ergonomic products and workplaces. However, designers often experience difficulty in searching anthropometric data relevant to the design due to the technicality of anthropometric terminologies, ambiguity in the description of measurement method for some anthropometric variables, and inefficiency of existing search methods for anthropometric data. The present study suggests a method to develop a classification system of anthropometric variables for systematic, efficient search of anthropometric data. The proposed method first classifies anthropometric variables according to body segment and type of variable, and then arranges anthropometric variables of the same body segment and variable type by comparing the heights of their reference points. The proposed classification method was applied to establish a classification system of 66 anthropometric variables that were selected for an automotive interior design. Then the established anthropometric classification system was utilized to design a search interface of a web-based anthropometric data retrieval system.

RANSAC-based Or thogonal Vanishing Point Estimation in the Equirectangular Images

  • Oh, Seon Ho;Jung, Soon Ki
    • 한국멀티미디어학회논문지
    • /
    • 제15권12호
    • /
    • pp.1430-1441
    • /
    • 2012
  • In this paper, we present an algorithm that quickly and effectively estimates orthogonal vanishing points in equirectangular images of urban environment. Our algorithm is based on the RANSAC (RANdom SAmple Consensus) algorithm and on the characteristics of the line segment in the spherical panorama image of the $360^{\circ}$ longitude and $180^{\circ}$ latitude field of view. These characteristics can be used to reduce the geometric ambiguity in the line segment classification as well as to improve the robustness of vanishing point estimation. The proposed algorithm is validated experimentally on a wide set of images. The results show that our algorithm provides excellent levels of accuracy for the vanishing point estimation as well as line segment classification.

Extraction and classification of tempo stimuli from electroencephalography recordings using convolutional recurrent attention model

  • Lee, Gi Yong;Kim, Min-Soo;Kim, Hyoung-Gook
    • ETRI Journal
    • /
    • 제43권6호
    • /
    • pp.1081-1092
    • /
    • 2021
  • Electroencephalography (EEG) recordings taken during the perception of music tempo contain information that estimates the tempo of a music piece. If information about this tempo stimulus in EEG recordings can be extracted and classified, it can be effectively used to construct a music-based brain-computer interface. This study proposes a novel convolutional recurrent attention model (CRAM) to extract and classify features corresponding to tempo stimuli from EEG recordings of listeners who listened with concentration to the tempo of musics. The proposed CRAM is composed of six modules, namely, network inputs, two-dimensional convolutional bidirectional gated recurrent unit-based sample encoder, sample-level intuitive attention, segment encoder, segment-level intuitive attention, and softmax layer, to effectively model spatiotemporal features and improve the classification accuracy of tempo stimuli. To evaluate the proposed method's performance, we conducted experiments on two benchmark datasets. The proposed method achieves promising results, outperforming recent methods.