• Title/Summary/Keyword: seed-borne disease

Search Result 40, Processing Time 0.027 seconds

One-step Multiplex RT-PCR Method for Simultaneous Detection of Seed Transmissible Bacterium and Virus Occurring on Brassicaceae Crop Seeds (십자화과 작물 종자에서 종자전염 세균 및 바이러스 동시 검출을 위한 One-step Multiplex RT-PCR 방법)

  • Jeong, Kyu-Sik;Soh, Eun-Hee
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2011
  • The aim of this research was to develop specific and sensitive PCR-based procedures for simultaneous detection of economically important plant pathogenic bacteria and seed borne virus in commercial Brassicaceae crop seeds, Xanthomonns campestris pv. campestris (Xcc) and Lettuce Mosaic Virus (LMV). Bacterial and virus diseases of Brassicaceae leaves are responsible for heavy losses. PCR with arbitral primers: selection of specific primers, performance of PCR with specific primers and determination of the threshold level for pathogens detection. To detect simultaneously the Xcc and LMV in commercial Brassicaceae crop seeds (lettuce, kohlrabi, radish, chinese cabbage and cabbage), two pairs of specific primer (LMV-F/R, Xcc-F/R) were synthesized by using primer-blast program (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The multiplex PCR for the two pathogens in Brassicaceae crop seeds could detect specifically without interference among primers and/or cDNA of other plant pathogens. The pathogen detection limit was determined at 1 ng of RNA extracted from pathogens. In the total PCR results for pathogen detection using commercial kohlrabi (10 varieties), lettuce (50 varieties), radish (20 varieties), chinese cabbage (20 varieties) and cabbage (20 varieties), LMV and Xcc were detected from 39 and 2 varieties, respectively. In the PCR result of lettuce, LMV and Xcc were simultaneously detected in 8 varieties.

Bakanae Disease Reduction Effect by Use of Silicate Coated Seed in Wet Direct-Seeded Rice (규산코팅 벼 종자를 이용한 담수직파재배 시 벼 키다리병 경감효과)

  • Kang, Yang-Soon;Kim, Wan Joong;Kim, Yeon Ju;Jung, Ki-Hong;Choi, Ul-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • To investigate the effect of soluble silicate zeolite dressing of the rice against bakanae disease, field trial in reclaimed land and in vitro were carried out. The coated rice seeds (SCS) which were dressed with the mixture of 25% silicic acids (binder), and the zeolite (coating powder). In wet direct seeding, uniform scattering of rice seeds on the soil surface and the better seedling establishment were shown in SCS treatment plots. The incidence of bakanae disease began from the mid tillering stage toward the heading stage. Around heading stage, the ratio of infected tillers reached its highest point by 9.9% in non-SCS treatment plots. While, in SCS treatment plots, the ratio of infected tillers was no more than 0.01%. The vitality of the pathogenic fungi of bakanae disease in the SCS and non-SCS samples were assessed. Samples were incubated for one week keeping proper humidity at $30^{\circ}C$ after inoculated with panicles of infected rice plants from experimental field plots. In non-SCS treatment, pinkish colonies were formed on the grain surface of panicle of infected plants, and mycelium, macro-conidia and micro-conidia were developed actively inside part of infected grain inoculated. While in SCS treatment, micro-conidia and mycelium were not survived and the growth of macro-conidia, mycelia were greatly inhibited and withered. Based on the results, it is concluded that the environmental friendly control of bakanae disease by use of SCS is possible and soluble silicate can be applied as agents for replacement of seed disinfection.

Disinfection of Seed Borne Black Leg Disease(Phoma wasabiae) in Wasabi(Wasabia japonica Matsum.) (고추냉이 먹들이병(Phoma wasabiae)의 종자소독 효과)

  • Moon, Jung-Seob;Kim, Hyung-Moo;Choi, Dong-Chil;Hong, Yoon-Ki;Sung, Moon-Ho;Jang, Young-Jik;Go, Bok-Rae;Oh, Nam-Ki;Choi, Yeong-Geun
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.180-183
    • /
    • 2003
  • P. wasabiae was isolated from discolored seeds of wasabi(Wasabia japonical Mtsum.) and inoculated to fresh seeds, then the effect of fungicides on suppression of diseases were determined. Emergence rate of wasabi seeds where suppressed to 52.5% by the inoculation and it reached up to 92.7% by dipping treatment of inoculated seeds ito benomyl solution. The incidence rate of black leg disease and damping off were 32.0 and 22.0%, respectively, in control treatment that sown in the soil inoculated with P. wasabiae. But dipping treatment of inoculated seeds into benomyl solution resulted in 12.0% and 10.7% in incidence rate of those two diseases, respectively.

Development and Evaluation of PCR-Based Detection for Pseudomonas syrinage pv. tomato in Tomato Seeds (토마토 종자로부터 PCR을 이용한 Pseudomonas syringae pv. tomato의 검출)

  • Cho, Jung-Hee;Yim, Kyu-Ock;Lee, Hyok-In;Yea, Mi-Chi;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.376-380
    • /
    • 2011
  • The bacterial speck of tomato caused by Pseudomonas syringae pv. tomato leads to serious economic losses especially on fruits of susceptible genotype. Thus, Pseudomonas syringae pv. tomato is a plant quarantine bacterium in many countries including Korea. In this study, we developed specific PCR assays for detection of the bacterium from tomato seeds. A specific primer set is designed from the hrpZ gene for specific detection of Pseudomonas syringae pv. tomato. A 501 bp PCR product corresponding to hrpZ gene was amplified only form Pseudomonas syringae pv. tomato strains, but no PCR product was amplified from other tomato bacterial pathogens, such as Pseudomonas syringae pv. glycinea, P. syringae pv. maculicola, P. syringae pv. atropurpurea, P. syringae pv. morsprunorum, and from other P. syringae pathovar strains. The nested-PCR primer set corresponding to an internal fragment of the 501 bp sequence (hrpZ) gine was used to specific detection of Pseudomonas syringae pv. tomato in tomato seed. A 119 bp PCR product using nested PCR primer was highly specific and sensitive to detect low level of Pseudomonas syrigae pv. tomato in tomato seeds. We believe that the PCR assays developed in this study is very useful to detect Pseudomonas syringae pv. tomato from the tomato seeds.

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.

Studies on Development of Antagonistic Microorganism by Cell Fusion - Biological control of disease - ) (세포융합에 의한 신 길항미생물 육종에 관한 연구 - 목초 병해의 생물학적 방제 -)

  • 최기춘;이영환;전우복
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • This study was to investigate an effective biological control of forage diseases and provide a basic data and a model in improving variety of antagonistic bacteria, with growth promoting effect on forage, through cell fusion. The results obtained were summarized as follows; 1. The antagonistic himbacterium against soil-borne phathogenic fungi Fusarium oxysporum and Rhizoctonia solani was isolated from continuous cropping himsphere soil of forage, and its biological and physiological characteristics were investigated. This bacterium was identified as Bacillus subrilis and named BS 101. Another strain for cell fusion was Bacillus thur ingiensis ssp. kurstaki HD-I(BT 37669) with insecticidal crystal. 2. The auxotropic mutants of BS 101 and BT 37669 were derived after mutagenesis using N-methyl-N'nitro- Nitrosoguanidine(NTG) to give amino acid requirement marker. n e s e auxotropic mutants of BS 101 and BT 37669 were named BS 1013(his-) and BT 69(asp-), respectively. 3. The best protoplast requirement was obtained using DM 3 medium, containing 5% casamino acid, 1 M $MgCI_2$ and 2% bovine semm albumin, to give Fusant 3, 7 and 8. BT toxin gene was not identified with fusants by Southern blotting. However, SDS-PAGE analysis of strains showed various protein patterns among fusants. 4. From the dark culture experiment, growth of forage in inoculated soil with antagonistic bacteria was delayed than that of non-inoculated soil with antagonistic bacteria in each continuous cropping soil and in each sterilized soil. On the other hand, growth duration of forage was different between continuous cropping soil and sterilized soil. 5. Seed germination of Alfalfa, Italian ryegrass and Orchardgrass were significantly improved by inoculation of antagonistic bacteria(p< 0.05).

  • PDF

Effect of Ethanol Extract of Quercus mongolica Leaf as Natural Food Preservative (신갈나무 잎 에탄올 추출물의 식품보존제 효과)

  • 오덕환;공영준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.243-249
    • /
    • 2001
  • This study was investigated to determine the antimicrobial effect of the ethanol extract of Quercus mongolica leaf on microbial growth. The ethanol extract at the concentration of $250\;\mu\textrm{g}/mL\;and\;500\;\mu\textrm{g}/mL$ inhibited the growth of gram positive and gram negative food-borne disease bacteria for 40 hours in tryptic soy broth, respectively. Antimicrobial activity of the ethanol extract from Quercus mongolica leaf was not affected by pH and heat treatment. The comparision between ethanol extract and commercially available preservatives on antimicrobial activity in food system was conducted. When the 0.1% ethanol extract of Quercus mongolica leaf was added to pine needle drink and carrot juice, antimicrobial activity was similar to those of containing 0.05% benzoic acid and 0.5% grapefruit seed extract. Also addition of 2~3% ethanol extract to the soybean paste inhibited the microbial growth up to 7 week, comparable to the inhibition of 2% ethanol. Thus, this results indicate that the ethanol extract of Quercus mongolica leaf may be useful as natural antimicrobial agents.

  • PDF

Genomic Analysis of the Carrot Bacterial Blight Pathogen Xanthomonas hortorum pv. carotae in Korea

  • Mi-Hyun Lee;Sung-Jun Hong;Dong Suk Park;Hyeonheui Ham;Hyun Gi Kong
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.409-416
    • /
    • 2023
  • Bacterial leaf blight of carrots caused by Xanthomonas hortorum pv. carotae (Xhc) is an important worldwide seed-borne disease. In 2012 and 2013, symptoms similar to bacterial leaf blight were found in carrot farms in Jeju Island, Korea. The phenotypic characteristics of the Korean isolation strains were similar to the type strain of Xhc. Pathogenicity showed symptoms on the 14th day after inoculation on carrot plants. Identification by genetic method was multi-position sequencing of the isolated strain JJ2001 was performed using four genes (danK, gyrB, fyuA, and rpoD). The isolated strain was confirmed to be most similar to Xhc M081. Furthermore, in order to analyze the genetic characteristics of the isolated strain, whole genome analysis was performed through the next-generation sequencing method. The draft genome size of JJ2001 is 5,443,372 bp, which contains 63.57% of G + C and has 4,547 open reading frames. Specifically, the classification of pathovar can be confirmed to be similar to that of the host lineage. Plant pathogenic factors and determinants of the majority of the secretion system are conserved in strain JJ2001. This genetic information enables detailed comparative analysis in the pathovar stage of pathogenic bacteria. Furthermore, these findings provide basic data for the distribution and diagnosis of Xanthomonas hortorum pv. carotae, a major plant pathogen that infects carrots in Korea.

Biological Control of Sesame Soil-born Disease by Antifungal Microorganisms (참깨 토양전염성병(土壤傳染性病)의 생물학적방제(生物學的防除))

  • Shin, G.C.;Im, G.J.;Yu, S.H.;Park, J.S.
    • Korean journal of applied entomology
    • /
    • v.26 no.4 s.73
    • /
    • pp.229-237
    • /
    • 1987
  • In order to study the biological control of soil-borne disease of sesame, antagonistic isolates of Trichoderma , Bacillus sand streptomyces to Fusarium oxysporum and Rhizoctonia solani were isolated from the rhizosphere soils of sesame plants and some other habitats. Out of the isolates of microorganisms collected a strain of Trichoderma viride was selected as a biological control agent for the study and its effect on the control of damping-off and the seedling growth of sesame was investigated. The results obtained are as follows: 26 percents of Bacillus spp. isolated from the rhizosphere soil of sesame plants showed antagonism to two pathogenic fungi. Important species were B. Subtilis and B. polymyxa. Streptomyces species isolated from the rhizosphere soils of sesame lysed the cell wall of hyphae and conidia of F. oxysporum and reduced conspicuously the formation of macroconidia and chlamydospores of the fungus. 84 percents of Trichoderma spp. isolated from the rhizosphere soil of sesame plants were antagonistic to F. oxysporum and 60 percents of the isolates were antagonistic to both F. oxysporum and R. solani. Trichoderma viride TV-192 selected from antagonistic isolates of Trichoderma spp. was highly antagonistic to F. oxysporum and soil treatment with the isolate reduced notably damping-off of sesame. T. viride TV-192 showed better growth in crushed rice straw, barley straw and sawdust media than F. oxysporum. Sawdust was selective for the growth of T. viride. Supplementation of wheat bran and mixtures of wheat bran and sawdust inoculated with T. viride TV-192 in the soil reduced remarkably damping-off of sesame by F. oxysporum but high density of the fungus TV-192 caused the inhibition of seed germination and seedling growth of sesame. Inhibitory effects of Trichoderma species on seed germination and seedling growth of sesame were different according to the isolates of the fungus. Normal sesame seedlings on the bed treated with the fungus showed better growth than not treated seedlings.

  • PDF

Detection of Soybean mosaic virus by Reverse Transcription Loop-mediated Isothermal Amplification (Reverse transcription Loop-mediated isothermal amplification을 이용한 Soybean mosaic virus의 진단)

  • Lee, Yeong-Hoon;Bae, Dae-Hyeon;Kim, Bong-Sub;Yoon, Young-Nam;Bae, Soon-Do;Kim, Hyun-Joo;Mainali, Bishwo P.;Park, In-Hee;Lee, Su-Heon;Kang, Hang-Won
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.315-320
    • /
    • 2015
  • Soybean mosaic virus (SMV) is a prevalent pathogen that causes significant yield reduction in soybean production worldwide. SMV belongs to potyvirus and causes typical symptoms such as mild mosaic, mosaic and necrosis. SMV is seed-borne and also transmitted by aphid. Eleven SMV strains, G1 to G7, G5H, G6H, G7H, and G7a were reported in soybean varieties in Korea. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) method allowed one-step detection of gene amplification by simple procedure and needed only a simple incubator for isothermal template. This RT-LAMP method allowed direct detection of RNA from virus-infected plants without thermal cycling and gel electrophoresis. In this study, we designed RT-LAMP primers named SML-F3/B3/FIP/BIP from coat protein gene sequence of SMV. After the reaction of RT-LAMP, products were identified by electrophoresis and with the detective fluorescent dye, SYBR Green I under daylight and UV light. Optimal reaction condition was at $58^{\circ}C$ for 60 min and the primers of RT-LAMP showed the specificity for nine SMV strains tested in this study.