• Title/Summary/Keyword: seed potential

Search Result 563, Processing Time 0.029 seconds

Improvement of Rice Seedling Emergence by Seed Coating Materials in Direct Seeding into Flooded Paddy Soil (벼 담수토중직파재배시 종자분의 재료에 따른 입모향상 효과)

  • 원종건;최충돈;이외현;이상철;김칠용;최부술
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.3
    • /
    • pp.286-291
    • /
    • 1997
  • This experiment was carried out to improve seedling emergence and establishment in paddy rice sown into puddled soil. Rice seed were coated with CaO$_2$, KNO$_3$ and acid sulphate soil. When coated seeds with CaO$_2$, KNO$_3$ and acid sulphate soil were sown into puddled soil, soil redox potential was increased and the period of oxidizing was longer in KNO$_3$ than that of any other soils. pH was higher in control than that of coated seeds with CaO$_2$, KNO$_3$ and acid sulphate soil. It seems that the coated seeds oxidize soil locally, thus prohibit soil reduction. Seedling emergence was improved by seed coating materials. Emergence date was 8 days after seeding(DAS) in CaO$_2$, 14 DAS in acid sulphate soil, 21 DAS in KNO$_3$ coated seed and 20 DAS in uncoated seed, respectively. Emergence rate was highest in CaO$_2$ coated seed(80%) followed by acid sulphate soil coated seed(61%), while control(46%) and KNO$_3$(42%) were very poor. This result would be interpreted as the difference in oxidizing power among coating agents ; CaO$_2$ and acid sulphate soil may oxidize weakly and shortly while KNO$_3$ may oxidize soil strongly and persistantly. Our results suggested that local oxidizing around rice seed sown into puddled soil enhanced seedling emergence and also found a possibility to promote seedling emergence with acid soil.

  • PDF

Comparison of Environmental Impacts of Green and Traditional Buildings using Life Cycle Assessment (전과정평가(LCA)를 이용한 친환경 인증 건축물과 일반 건축물의 환경영향 비교 사례 연구)

  • Hong, Taehoon;Jeong, Kwangbok;Ji, Changyoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2014
  • This study aims to understand the environmental impact reduction of green buildings that are certified by Green standard for energy and environmental design(G-SEED). To ensure this end, this study assessed and compared the environmental impacts(global warning, ozone layer depletion, acidification, and eutrophication) of a G-SEED-certified elementary school building(green building) and an uncertified elementary school building(traditional building) using the life cycle assessment methodology. This study considered the environmental impacts from the material manufacturing, material transportation, on-site construction, and operation during 40 years. The comparison of the environmental impact intensity of two buildings showed that the green building generated much more environmental impacts than the traditional building. For example, the global warming potential of the green building was approximately 12.5% higher than of the traditional building since the global warming potential of the green building was 3.751 $t-CO_2eq./m^2$ while that of the traditional building was 3.282 $t-CO_2eq./m^2$. It signifies that the G-SEED doesn't guarantee the reduction of the environmental impacts in terms of four impact categories. Therefore, the G-SEED should be complemented and improved to achieve the environmental impact reduction.

Interaction between Light and other Factors Affecting Germination of Oenothera lamarckiana Ser. Seed. (큰달맞이꽃 종자발아(種子發芽)에 영향하는 요인(要因)과 광간(光間)의 상호작용(相互作用))

  • Kim, J.S.;Hwang, I.T.;Koo, S.J.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.8 no.1
    • /
    • pp.15-22
    • /
    • 1988
  • In this experiment, interactions between light and other factors such as chilling, alternating temperature, moisture, content, oxygen, and seed coat which affect germination of Oenothera lamarckiana Ser. seed were investigated to study the physiological effects of light on the germination. Light induced the initial stage of seed germination before radical protrusion by affecting embryo rather than seed coat even under anaerobic condition or low water potential (-18 bars). This light effect on germinability of seed was suppressed by blue light irradiation and the effect was increased with increment of blue light intensity and irradiation time. However, the blue light effect was reversible. Chilling, alternating temperature, softening of seed coat and light showed promotive interaction in the induction of seed germination. Irradiation of filtered light (monochrome), however, reduced chilling effect on germination. Hydrogen-ion concentration and gibberellic acid treatment had no effect on light or dark germination.

  • PDF

Study on the anti-inflammatory effects of Cannabis sativa L. seed oil complex (햄프(Cannabis sativa L.)씨드오일 복합물의 항염증 효과에 관한 연구)

  • Chae-Hyun Kim;Se Gie Kim;Young-Ah Jang;Yong-Jin Kwon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.251-259
    • /
    • 2024
  • This study evaluated the potential of hemp seed oil (Cannabis sativa L. seed oil, CSO) and hemp seed oil complex (Cannabis sativa L. seed oil complex, CSOC) as an anti-inflammatory material through comparative analysis. Anti-inflammatory effects of CSO and CSOC were confirmed through lipopolysaccharide (LPS)-induced RAW264.7 model. As a result of confirming the inhibition of lipid oxidation through lipoxygenase inhibitory activity, CSO was not inhibited, but COSC was inhibited by more than 70%. As a result of confirming cytotoxicity through MTT analysis, CSO did not show cytotoxicity, but CSOC showed cytotoxicity at over 200 ㎍/ml. In LPS-induced RAW264.7, the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) were significantly inhibited by CSOC compared to CSO. Additionally, CSOC significantly inhibited the expression of cyclooxygenase (COX)-2 and the production of prostaglandin E2 (PGE2). Through this study, we confirmed that CSOC has superior anti-inflammatory effects than CSO and has the potential to be used as an anti-inflammatory material.

Allelopathic Effects of Extracts from Ficus Bengalensis L. (Ficus bengalensis L.의 알레로파시 효과)

  • Jayakumar, M.;Manikandan, M.;Eyini, M.
    • The Korean Journal of Ecology
    • /
    • v.21 no.2
    • /
    • pp.133-137
    • /
    • 1998
  • Well grown trees of ficus bengalensis produce one or more potential inhibitors of seed germination and seedling growth. The aqueous extract of ficus leaf and bark enhanced the shoot length aqueous leaf extract of F. bengalensis. Bark extract of F. bengalensis inhibited the shoot length and root length of the plant at high concentration. Both the bark and leaf extract inhibited the seed germination. The postemergence and preemergence treatment of bark and leaf extract of F. bengalensis reduced the shoot biomass. The result suggest that F. bengalensis may have potential allelochemicals which may be developed as natural herbicides.

  • PDF

Effects of Water Potential on Germination and Chemical Composition of Soybean, Peanut and Corn Seeds (수분포텐셜이 콩, 땅콩 및 옥수수 종자의 발아와 화학성분에 미치는 영향)

  • 성락춘;김형곤;박세준
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.5
    • /
    • pp.569-577
    • /
    • 1996
  • This experiment was conducted to investigate the effects of water potential by PEG treatment on germination and quantitative changes of seed storage reserves of soybean [Glycine max (L.) Merr.], peanut(Arachjs hypogaea L.) and corn(Zea may L.). Water potential of PEG(M.W. 10, 000) solution as germination media was 0.0, -0.2, and -0.5MPa. The highest moisture uptake rate was found in soybean seedlings among three crops. Moisture content of seedlings of three crops was decreased at -0.5MPa treatment and seedling length was delayed with water potential decrement. As water potential decreased, decreasing rate of protein content of the seedlings compared to seeds was declined in soybean and peanut. Decreasing rate of starch content of the seedlings was decreased in corn at -0.5MPa treatment. Increasing rate of sugar content of the seedlings was markedly decreased at -0.5MPa treatment in all crops. The results of this experiment showed that availability of moisture and synthesis of sugar for seed germination were influenced below -0.5MPa water potential in three crops.

  • PDF

Application of computer vision for rapid measurement of seed germination

  • Tran, Quoc Huy;Wakholi, Collins;Cho, Byoung-Kwan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.154-154
    • /
    • 2017
  • Root is an important organ of plant that typically lies below the surface of the soil. Root surface determines the ability of plants to absorb nutrient and water from the surrounding soil. This study describes an application of image processing and computer vision which was implemented for rapid measurement of seed germination such as root length, surface area, average diameter, branching points of roots. A CCD camera was used to obtain RGB image of seed germination which have been planted by wet paper in a humidity chamber. Temperature was controlled at approximately 250C and 90% relative humidity. Pre-processing techniques such as color space, binarized image by customized threshold, removal noise, dilation, skeleton method were applied to the obtained images for root segmentation. The various morphological parameters of roots were estimated from a root skeleton image with the accuracy of 95% and the speed of within 10 seconds. These results demonstrated the high potential of computer vision technique for the measurement of seed germination.

  • PDF

Effect of Seed Priming on Quality Improvement of Maize Seeds in Different Genotypes

  • Seo Jung Moon;Lee Suk Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.381-388
    • /
    • 2004
  • In Korea, production of super sweet corn has been economically feasible and is substituting for traditional sweet corn due to better flavor in recent years. Major limiting factors for super sweet corn production are low field emergence and low seedling vigor. The optimum water potential (WP) for the priming of normal and aged seeds of dent, sweet (su) and super sweet (sh2) corns was studied to improve low seed quality. Seeds were primed at 0, -0.3, -0.6, -0.9, and -1.2 MPa of polyethylene glycol (PEG) 8000 solution at $15^{\circ}C$ for 2 days. Priming effects differed depending on the type of corn, seed quality, and WP of PEG solution. Although WP of priming solution did not influence the emergence rate of extremely high quality normal dent corn seeds, it reduced time to $50\%$ emergence (T50) and increased plumule weight. In contrast, the emergence rate of aged field corn was improved by seed priming at 0 MPa and plumule weight and $\alpha-amylase$ activity was enhanced. The optimum WP for both normal and aged sweet and super sweet corn seeds was between -0.3 and -0.6 Mpa. At the optimum WP emergence rate, $\alpha-amylase$ activity, and content of DNA and soluble protein increased, while T50 and leakage of total sugars and electrolytes reduced.

Improving the Calorific Value of Nyamplung (Calophyllum inophyllum L.) Seed Shell Pellets by Torrefaction Treatment for Their Use as a Renewable Energy Resource

  • Johanes Pramana Gentur SUTAPA;Geraldy KIANTA;Budi LEKSONO;Ahmad Harun HIDAYATULLAH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.363-374
    • /
    • 2024
  • Nyamplung (Calophyllum inophyllum L.) seeds, which account for 40% of the fruit, have been used as a raw material for biofuels, and the seed shells remaining after their extraction are wasted. In this study, we investigated the potential of waste Nyamplung seed shells in the form of pellets as a biomass energy resource. A completely randomized research design was implemented to evaluate the effects of torrefaction and heat treatment on the quality of produced pellets. Two observed treatments, namely, particle size (0.18-0.25, 0.25-0.43, and 0.43-0.84 mm) and torrefaction temperature (200℃, 225℃, and 250℃), were investigated. Our results showed that the calorific value of torrefied Nyamplung seed-shell pellets ranged from 4,245.60 to 4,528.00 cal/g, fulfilling the Indonesia Nasional Standard (≥ 4,000 cal/g). The quality of pellets were the best when produced from raw materials with a particle size of 0.18-0.25 mm and torrefaction temperature of 225℃. Thus, we concluded that waste Nyamplung seed shells are a good raw material for the production of pellets.

Development of On-line Sorting System for Detection of Infected Seed Potatoes Using Visible Near-Infrared Transmittance Spectral Technique (가시광 및 근적외선 투과분광법을 이용한 감염 씨감자 온라인 선별시스템 개발)

  • Kim, Dae Yong;Mo, Changyeun;Kang, Jun-Soon;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In this study, an online seed potato sorting system using a visible and near infrared (40 1100 nm) transmittance spectral technique and statistical model was evaluated for the nondestructive determination of infected and sound seed potatoes. Seed potatoes that had been artificially infected with Pectobacterium atrosepticum, which is known to cause a soil borne disease infection, were prepared for the experiments. After acquiring transmittance spectra from sound and infected seed potatoes, a determination algorithm for detecting infected seed potatoes was developed using the partial least square discriminant analysis method. The coefficient of determination($R^2_p$) of the prediction model was 0.943, and the classification accuracy was above 99% (n = 80) for discriminating diseased seed potatoes from sound ones. This online sorting system has good potential for developing a technique to detect agricultural products that are infected and contaminated by pathogens.