• Title/Summary/Keyword: seed planting date

Search Result 70, Processing Time 0.018 seconds

Effect of Planting Time on Seed Production of Vegetable Soybean at Different Locations (풋콩 재배지에 따른 파종시기가 종자생육에 미치는 영향)

  • Baek, In-Youl;Shin, Doo-Chull;Park, Chang-Kie;Lee, Jin-Mo;Suh, Hyung-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.44-51
    • /
    • 1995
  • This investigation was conducted to determine the effect of the optimum planting date and place for good seed production on growth variation, grain yields, different of variety, infection of seed by fungi, and seed germination and vigor after room storage. Early maturity Korean soybean variety, Keunolkong, and introduced vegetable soybean variety, Fukura-edamame, were planted at field of YAES. and high cool land of Sajapyong in Milyang(altitude, 850m) on May 15 (early), June 15 (mid.), and July 15 (late) in 1991. The emergence and vegetative period gradually increased in the early planting date. The grain yield, seed weight, pod number, healthy grain yield also increased when Keunolkong was planted on early date. The healthy seed rate, Keunolkong increased in the early planting date, whereas that of Fukura also increased in the late planting date. Infection ratio of grain to phomopsis seed decay (Phomopsis spp. ' Diaporthe phaseolorum) in Fukura steadily increased in the early planting date. Infection ratio of grain to purple seed stain (Cercospora kikuchii) generally increased in the mid and late planting date. The seed germination and seedling vigor after room storage from five to six months gradually increased in the late planting date. And seed germination of Fukura rapidly decreased in the early planting date. Therefore, the optimum planting date for good seed production in early maturity vegetable soybean was June 15 in terms of harvesting time avoid a high temprature and humidity.

  • PDF

Effect of Planting Date and Plant Density on Yield and Quality of Industrial Rapeseed in Spring Sowing

  • Kwon, Byung-Sun;Jung, Dong-Soo
    • Plant Resources
    • /
    • v.8 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • In spring, to determine the optimal planting date and plant density of rapeseed in southern areas of Korea. $Taiwan^{\#1}$ variety for spring sowing, the highest yielding variety was grown under five different planting date and plant density. Yield components such as plant height, ear length, number of seedling stand per $m^2$, number of per ear and seed set percentage were highest at the plots with Mar. 5 of planting date and 50/20cm drilling of plant density. Yield of seed, oil, gas and 1,000 grains weight and erucic acid content were highest at the Mar. 5 of planting date and 50/20cm drilling of plant density. Judging from the results reported above, at optimum planting date and plant density of rapeseed seemed too be Mar. 5 of planting date and 50/20cm plant density in spring sowing.

  • PDF

Effects of Planting Dates on Growth and Yield of Soybean Cultivated in Drained-Paddy Field

  • Cho Jin-Woong;Lee Jung-Joon;Kim Choong-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • This study was carried out to determine adequate planting date, to compare the growth characteristics between early and late maturing cultivars, and to provide the data for the cultivation techniques of soybean [Glycine max (L.) Merr.] in double cropping system with winter crops on paddy field in Korea. Cultivars were planted on 26 May, 16 June, and 7 July with a planting density of $70cm(row\;widtb)\;{\times}\;10cm$ (planting spacing). Seed yield of soybean planted on June 16 and July 7 was approximately $37\%\;and\;53\%$, respectively, less than that of conventional planting date of May 26 in Pungsan-namulkong, and planted on June 16 and July 7 was about $30\%\;and\;37\%$, respectively, less then that of conventional planting date of May 26 in Hanamkong. The number of pods and seeds per plant decreased as planting date delayed. Seed weight increased in Pungsan-namulkong but decreased in Hannamkong as planting date delayed. The flowering date was late in delayed planting plots, but it was shorted for days from emergence to flowering and from emergence to maturity. The plant height of Hannamkong was greater than Pungsan-namulkong from the emergence to flowering stages, but in contrast, it was greater in Pungsan-namulkong than Hannamkong after flowering stage (50d after emergence) when it planted on May 26. There were no significant differences between two soybean cultivars at planting dates of June 16 and July 7. Leaf number, leaf area, and dry matter were also reduced by late planting, and Both of them were shown in high reduction at the later planting. There was a high significant difference at the flowering $(r\;=\;0.87^{**})$ and pod formation $(r\;=\;0.91^{**})$ stages between leaf dry matter and seed yield. Crop growth rate (CGR) was greater at $R2\~R3$ growth stages compared to $R3\~R4\;or\;R4\~R5$ growth stages in two soybean cultivars and the greatest CGR was obtained at planting date of May 26 in two soybean cultivars except for R4-R5 growth stage in Pungsan-namulkong. There was a highly significant positive difference between the seed yield and the leaf area index (LAI) across R3 to R4 and R2 to R3 stages. The photosynthetic rate $(P_N)$ of the uppermost leaf position had no significant difference among planting dates and between two soybean cultivars. However, $P_N$ of the $7^{th}$ leaf position increased as the planting date delayed.

Effect of Planting Date and Planting Density on Growth and Yield of Soybean in Cheju Island

  • Kang, Young-Kil;Ko, Mi-Ra;Cho, Nam-Ki;Park, Yang-Mun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.1
    • /
    • pp.44-48
    • /
    • 1998
  • Two determinate soybean cultivars, 'Baegunkong' and 'Namhaekong', were planted on 8 Jone, 23 June, and 8 July 1996 at Cheju at planting densities of 33, 43, 53, 63 plants per $m^2$ to determine the optimum planting density of double crop soybean for recently recommended cultivars in Cheju area at various planting dates. The plant height, and the diameter and node number of main stems decreased as planting was delayed. The plant height increased but the stem diameter and node number decreased with increasing planting density. Pod number per plant was greater for Namhaekong than for Baegunkong and was not affected by planting date. Pod number per plant decreased but pod numbers per $\textrm{m}^2$ increased with increasing planting density. The number of seeds per pod was greater at the two later plantings and fewer at the highest planting density. 100-seed weight decreased with delaying planting. The seed weight was lighter at the highest planting density for Baegunkong but there was no difference for Namhaekong among the planting densities. The seed yield of Baegunkong was greater for 23 June and 8 July plantings (2,280 and 2,420 kg/ha) than for 8 June planting (1,450 kg/ha) while that of Namhaekong was greatest at 23 June planting (2,690 kg/ha) compared with 8 June and 8 July plantings (1,890 and 2,080 kg/ha). Across the planting dates and cultivars, seed yield increased from 1,860 to 2,290kg/ha as the planting density increased from 33 to 53 plants/$\textrm{m}^2$ and then leveled off with a further increase in planting density.

  • PDF

Soybean Ecological Response and Seed Quality According to Altitude and Seeding Dates

  • Shin, Sang-Ouk;Shin, Seong-Hyu;Ha, Tae-Jeong;Lim, Sea-Gyu;Choi, Kyung-Jin;Baek, In-Youl;Lee, Sang-Chul;Park, Keum-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.143-158
    • /
    • 2009
  • This experiment was carried out to examine ecological response and soybean quality as affected by environmental cultivation for producing high seed quality in domestic soybean variety. The results are as follows: Under equal cumulative temperature condition, soybean plants grown in Muju showed longer days to flowering, which was an effect of the long day-length on high latitudes, and longer duration of reproductive stage as a result of low temperature within that period. Considering apparent seed quality, 100 seed weight of soybeans grown in Muju was heavier than Miryang. Ratio of seed crack and disease-damaged seeds was lower in Muju, and these parameters decreases as planting was delayed. The protein contents did not show significant difference in terms of altitude and planting date, however, crude oil contents were higher in Miryang. An opposite trend was observed in C18:1 and C18:3. In the fatty acid composition, the proportion of C18:1 decreased as seeding date was delayed, and was higher in Miryang. Opposite observations were obtained from C18:3. The anthocyanin contents were highest on June 10 planting and higher in Muju than in Miryang. Isoflavone content was higher as seeding date was delayed and is similar accross seeding dates in Muju. As a summary, for high seed quality production the optimum planting date was June 10, and Muju was more suitable region than Miryang.

Mass Propagation of Plug Seedling using Stem Cutting and Their Tuber Yield in Potato

  • Park, Yang-Mun;Song, Chang-Khil;Kang, Bong-Kyoon;Kim, Dong-Woo;Ko, Dong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.201-206
    • /
    • 1999
  • For the mass production of plug seedlings in cultivar ‘Dejima’ potato (Solanum tuberosum L.) the optimal apical cutting diameter for rooting and rapid multiplication of stem cuttings in hydroponics were determined. In addition, the best planting date was predicted to increase tuber yield of plug seedlings at fall cropping in Cheju-Do, Korea. Days to initial rooting decreased as the cutting diameter was reduced. Plant height, leaf number, root length and root weight per plant were favorable as the cutting diameter was small. The ideal cutting diameter was 1-2 mm in this experiment. In the hydroponic cultures, the Japanese standard (JS) nutrient solution was the most effective for multiplication of stem cuttings. It was able to propagate more than 20 times a month from a single mother plant. Viability of plants, which were derived from plug seedlings using stem cuttings, was excellent when transplanted to the field. The number of tubers and tuber yield in both of the plug seedlings and seed potato planting plots were high when planted on 25 August. The number and yield were reduced when planted on 15 August, 5 September and 15 September. The degree of decrease of tuber yield in the plug seedling planting plot however, was lower than that of seed potatoes when the planting date was late. In the case of small tubers (under 30 g), the number of tubers and tuber yield were evidently increased in the seed potato tuber planting plot; the yield of large tuber (over 80g) in the plug seedling planting plot was higher than that of the seed potato. The total tuber yield per plant in the plug seedling planting plot was less than that of the seed potato; therefore, in order to increase tuber yield it was necessary to increase field plant density.

  • PDF

Effects of Seeding Date and Planting Spaces on Growth and Yield of Swordbean (Canavalia gladiata DC.)

  • Lee, Jae-Wung;Kim, Ik-Je;Ryu, In-Mo;Park, Seong-Gyu;Choi, Gwan-Soon;Kwon, Yong-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.364-367
    • /
    • 1999
  • Swordbean was recently introduced to Korea, and cultural technique for stable production, e.g. optimum seeding date and planting space, has not been established. This experiment was conducted to elucidate the changes of growth characteristics, yield components, and yield as affected by different seeding dates and planting spaces. Days to flowering was shortened by 4∼28 days as seeding was delayed. Stem diameter, number of pods per plant, number of seeds per plant, 100-seed weight, and seed yield tended to increase with delaying seeding up to 5 April and then to decrease with further delaying seeding. These results indicate that optimum seeding date of swordbean in unheated polyvinyl house would be early April. Although, the swordbean exhibited large increases in plant height, number of branches per plant, and stem diameter at the wider spacings, planting space could be decreased to the 60 cm plant-spacing and 30 cm row-spacing with no deleterious effect on yield.

  • PDF

Dry Matter Accumulation, Harvest Index, and Yield of Soybean in Response to Planting Time

  • Chun, Seong-Rak
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.4
    • /
    • pp.311-318
    • /
    • 2002
  • Planting date of soybeans [Glycine max (L.) Merr.] is one of production components in cultural systems. The objective of the current study was to identify the components of soybean production and cultural practices encompassing planting dates and cultivars that respond to dry matter accumulation, harvest index and yield components. Three determinate soybean cultivars were planted on May 13 (early), June 3 (mid), and June 24 (late). Planting density was 60$\times$15cm with 2 seeds (222,000 plants per ha). Soybean plants were sampled every 10 days interval from the growth stages of V5 to R8 and separated into leaves including petioles, stems, pods, and seeds. Dry matter accumulations, harvest indices, and yield components were measured. Early planting had taken 55 days from VE to R2 and late planting taken 39 days indicating reduced vegetative growth. Early planting showed higher leaf, stem, pod and seed dry weights than late planting. However, late planting appeared to be higher harvest index and harvesting rate. Vegetative mass including leaf and stem increased to a maximum around R4/R5 and total dry weight increased to a maximum around R5/R6 and then declined slightly at R8. The highest seed yield was obtained with mid planting and no difference was found between early and late plantings. Cultivar differences were found among planting dates on growth characteristics and yield components. The results of this experiment indicated that soybean yield in relation to planting dates examined was mainly associated with harvest index and harvesting rate, and planting date of cultivars would be considered soybean plants to reach the growth stage of R4/R5 after mid August for adequate seed yield.

Maturity Grouping of Korean Soybean Cultivars and Character Relationships According to the Planting Date

  • Ha, Tae-Jeong;Lim, Sea-Gyu;Shin, Seong-Hyu;Choi, Kyung-Jin;Baek, In-Youl;Lee, Sang-Chul;Park, Keum-Yong;Shin, Sang-Ouk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.104-118
    • /
    • 2009
  • This study was carried out to classify Korean soybean varieties base on maturity group (MG) and to find character relationships according to planting date for high quality soybean seed production adapted to early season cultivation environment of Miryang. Results of maturity grouping of Korean soybean varieties showed that Keunol (3 cultivars), belonged to Group 0; Seonnok and Danmi in Group II, Shinrok in Group III, Seonyu (17 cultivars), in Group IV, Taekwang (44 cultivars) in Group V, Daewon (25 cultivars) in Group VI, and Kwangdu and Keumdu in Group VII. Agronomic characteristics of 100 soybean varieties were compared based on MG, cultivation year and seeding date. Soybean varieties belonging to the MG $VI{\sim}VII$ showed longer days to flowering and growth period, high lodging density and higher yield. Seed quality analysis revealed that as maturity was delayed, seed weight becomes heavier while seed cracks become abundant. In addition, occurrence of purple seed and phomopsis were higher in MG $0{\sim}III$. Protein content was higher in MG $0{\sim}III$, and isoflavone content was higher as maturity was delayed. On the other hand, lipid content was generally similar across MGs. Correlation analysis of major agronomic characters showed positive relationships between days to flowering and growth days, seed weight and lodging in MG $IV{\sim}V$, seed crack and growth days in MG $0{\sim}III$, seed crack and days to flowering in MG $IV{\sim}V$ and MG $VI{\sim}VII$, seed crack and lodging in MG $IV{\sim}V$ and MG $VI{\sim}VII$, seed crack and seed weight in MG $IV{\sim}V$ and MG $VI{\sim}VII$, purple seed and growth days in MG $IV{\sim}V$, purple seed and seed weight in MG $VI{\sim}VII$, phomopsis and growth days in MG $IV{\sim}V$ and MG $VI{\sim}VII$, and phomopsis and purple seed in MG $IV{\sim}V$ and MG $VI{\sim}VII$. In contrast, a negative relationship was observed between seed weight and lodging in MG $0{\sim}III$. Correlating yield and major characters revealed negative relationships between days to flowering and growth days in MG $0{\sim}III$ and MG $IV{\sim}V$, whereas positive relationships were obtained on MG $VI{\sim}VII$ seeded on April 30. Lodging, seed weight and seed crack were all negatively correlated with yield in the MG $IV{\sim}V$ and MG $VI{\sim}VII$. Soybean cultivars identified as adaptable to early season planting for production of high quality soy curd and fermented soybean paste were Seonyu, Kwangdu, and Soho while those suited for the manufacture of soybean sprouts were Sobaeknanul, Kwangan, Sowon, and Bosuk. Geomjeong 2 chosen as best for mixing with rice.

Effect of Sowing Date and Plant Density on Yield of Rapeseed in Autumn Sowing

  • Kwon Byung-Sun;Choi Seung-Sun;Lim Jung-Mook;Choi Gab-Lim;Kim Sang-Kon
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.258-262
    • /
    • 2005
  • In autumn, to determine the optimal planting date and plant density of rapeseed in southern areas of Korea, Yudal variety for autumn sowing, the highest yielding variety was grown under three different planting dates and five different plant densities. Yield components such as plant height, ear length, number of seedling stand per $m^2$, number of branches and pod length were highest at the plots with Sep. 30 of planting date and 30/20 cm drilling of plant density. Yield of seed, oil and 1,000 grains weight were highest at the Sep.30 of planting date and 30/20 cm drilling of plant density. Judging from the results reported above, at optimum planting date and plant density of rapeseed seemed to be Sep.30 of planting date and 30/20cm plant density in autumn sowing.

  • PDF