• Title/Summary/Keyword: seed inoculation

Search Result 126, Processing Time 0.026 seconds

Fine mapping of qBK1, a major QTL for bakanae disease resistance in rice

  • Ham, Jeong-Gwan;Cho, Soo-Min;Kim, Tae Heon;Lee, Jong-Hee;Shin, Dongjin;Cho, Jun-Hyun;Lee, Ji-Yoon;Yoon, Young-Nam;Song, You-Chun;Oh, Myeong-Kyu;Park, Dong-Soo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.92-92
    • /
    • 2017
  • Bakanae disease is one of the most serious and oldest problems of rice production, which was first described in 1828 in Japan. This disease has also been identified in Asia, Africa, North America, and Italy. Germinating rice seeds in seed boxes for mechanical transplantation has caused many problems associated with diseases, including bakanae disease. Bakanae disease has become a serious problem in the breeding of hybrid rice, which involves the increased use of raising plants in seed beds. The indica rice variety Shingwang was selected as resistant donor to bakanae disease. One hundred sixty nine NILs, YR28297 ($BC_6F_4$) generated by five backcrosses of Shingwang with the genetic background of susceptible japonica variety, Ilpum were used for QTL analysis. Rice bakanae disease pathogen, CF283, was mainly used in this study and inoculation and evaluation of bakanae disease was performed with the method of the large-scale screening method developed by Kim et al. (2014). SSR markers evenly distributed in the entire rice chromosomes were selected from the Gramene database (http://www.gramene.org), and the polymorphic markers were used for frame mapping of a $BC_5F_5$ resistant line. Here, we developed 168 near-isogenic rice lines (NILs, $BC_6F_4$) to locate a QTL for resistance against bakanae disease. The lines were derived from a cross between Shingwang, a highly resistant variety (indica), and Ilpum, a highly susceptible variety (japonica). The 24 markers representing the Shingwang allele in a bakanae disease-resistant NIL, YR24982-9-1 (parental line of the $BC_6F_4$ NILs), were located on chromosome 1, 2, 7, 8, 10, 11, and 12. Single marker analysis using an SSR marker, RM9, showed that a major QTL was located on chromosome 1. The QTL explained 65 % of the total phenotype variation in $BC_6F_4$ NILs. The major QTL designated qBK1 was mapped in 91 kb region between InDel15 and InDel21. The identification of qBK1 and the closely linked SSR marker, InDel18, could be useful for improving rice bakanae disease resistance in marker-assisted breeding.

  • PDF

Sensory Characteristics of Citrus Vinegar fermented by Gluconacetobacter hanenii CV1 (Gluconacetobacter hansenii CV1에 의해 발효된 감귤식초의 관능적 특성)

  • Kim Mi-Lim;Choi Kyung-Ho
    • Korean journal of food and cookery science
    • /
    • v.21 no.2 s.86
    • /
    • pp.263-269
    • /
    • 2005
  • Citrus juice, a concentrate manufactured by the Jeju Provincial Corporation, was converted into vinegar orderly by alcohol and acetate fermentation. The juice with 6 folds dilution by distilled water was used as the sole nutrient source through out experiments. Diluted juice contained $12.96^{\circ}Brix$ of total sugar, $0.632\%$ of total acid and $20.23{\mu}g/m{\ell}$ of hesperidin. Naringin was not detected from the juice. Citrus wine having $5.6\~6.3\%$ alcohol was produced from diluted juice by 3 days of fermentation at $28^{\circ}C$. A kind of malomelo yeast CMY-28 was used for wine fermentation. The wine was succeedingly fermented for 8 days at $30^{\circ}C$ after inoculation of seed vinegar which contained active cells of acid producing bacteria CV1. Inoculum size of seed vinegar was controlled to $10\%$(v/v) of citrus wine. The wine converted into vinegar by the fermentation. Citrus vinegar, the final product of fermentation, was colored with very thin radish-yellow and transparent. It's acidity ranged between $5.8\~6.2\%$ as acetic acid. The vinegar got the best score by sensory test among several natural fruit vinegars. It was clear from the results that citrus vinegar in high quality could be produced from concentrated citrus juice, however fermentation conditions should be improved to reduce the amount of reducing alcohol.

Effect of Microwave Plasma on Sterilization of Acidovorax citrulli Infected Watermelon Seeds (저온플라즈마(Microwave Plasma)를 활용한 Acidovorax citrulli 감염 수박종자의 살균 효과 검정)

  • Kim, Sang Woo;Ju, Han Jun;Gwon, Byeong Heon;Adhikari, Mahesh;Kim, Hyun Seung;Park, Mi-Ri;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.27 no.1
    • /
    • pp.8-16
    • /
    • 2021
  • This study was conducted to check the sterilization efficacy of microwave plasma (MWP) against the watermelon seeds infected with Acidovorax citrulli 11-251. Watermelon seeds were artificially vacuum inoculated to produce A. citrulli 11-251 infected seeds. Aac ImmunoStrip and scanning electron microscope (SEM) results suggests that, seeds (coat and endosperm) were infected under the concentration of 1×107/30 min. MWP sterlization process was carried out at 50 W (3 min, 5 min, and 10 min), 80 W (3 min, 5 min, and 10 min), and 100 W (3 min, 5 min, and 10 min). According to the results, MWP sterilized the artificially inoculated seed coats by 95.96% at 80 W/10 min and seed endosperms by 100% at 100 W/10 min respectively. Although, seeds were sterlized by MWP, germination rate of seeds were low as compared to non treated (negative control) seeds. Moreover, cell membrane of A. citrulli 11-251 was damaged while observed in SEM after sterilized with MWP. Further studies regarding the appropriate sterilization condition by MWP against A. citrulli infected seeds for germination will be conducted in our next study.

HR-Mediated Defense Response is Overcome at High Temperatures in Capsicum Species

  • Chung, Bong Nam;Lee, Joung-Ho;Kang, Byoung-Cheorl;Koh, Sang Wook;Joa, Jae Ho;Choi, Kyung San;Ahn, Jeong Joon
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.71-77
    • /
    • 2018
  • Resistance to Tomato spotted wilt virus isolated from paprika (TSWV-Pap) was overcome at high temperatures ($30{\pm}2^{\circ}C$) in both accessions of Capsicum annuum S3669 (Hana Seed Company) and C. chinense PI15225 (AVRDC Vegetable Genetic Resources). S3669 and PI15225, which carrying the Tsw gene, were mechanically inoculated with TSWV-Pap, and then maintained in growth chambers at temperatures ranging from $15{\pm}2^{\circ}C$ to $30{\pm}2^{\circ}C$ (in $5^{\circ}C$ increments). Seven days post inoculation (dpi), a hypersensitivity reaction (HR) was induced in inoculated leaves of PI152225 and S3669 plants maintained at $25{\pm}2^{\circ}C$. Meanwhile, necrotic spots were formed in upper leaves of 33% of PI15225 plants maintained at $30{\pm}2^{\circ}C$, while systemic mottle symptoms developed in 50% of S3669 plants inoculated. By 15 dpi, 25% of S3669 plants had recovered from systemic mottling induced at $30{\pm}2^{\circ}C$. These results demonstrated that resistance to TSWV-Pap can be overcome at higher temperatures in both C. chinense and C. annuum. This is the first study reporting the determination of temperatures at which TSWV resistance is overcome in a C. annuum genetic resource expressing the Tsw gene. Our results indicated that TSWV resistance shown from pepper plants possess the Tsw gene could be overcome at high temperature. Thus, breeders should conduct evaluation of TSWV resistance in pepper cultivars at higher temperature than $30^{\circ}C$ (constant temperature).

Comparison of Sudden Death Syndrome in Responses to Fusarium solani f. sp. glycines between Korea and U.S. Soybean Lines

  • Cho, Joon-Hyeong;Kim, Yong-Wook;Rupe, J.C.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.382-390
    • /
    • 1999
  • In order to identify the responses of Korean soybean cultivars to sudden death syndrome (SDS), forty-two Korean cultivars and three check cultivars (Hartwig and PI 520733 are resistant; Hartz 6686 is susceptible) were tested with sorghum seed inoculum infested with Fusarium solani f. sp. glycines isolate 171 in the greenhouse. This isolate has blue pigment cultural shape on potato dextrose agar (PDA) medium. All Korean cultivars inoculated with F. solani isolate 171 showed the typical SDS symptoms and disease severity on soybean leaves in each cultivar varied at 4 weeks after inoculation. Nine cultivars were included in the most SDS susceptible group and six cultivars were included in the most susceptible group based on Duncan's multiple range tests (P$\leq$0.05). In results of the LSD analysis for SDS the resistant group, a total of twenty-five Korean cultivars were included in the same SDS resistant group as PI 520733 or Hartwig and fourteen Korean cultivars were included in the same SDS susceptible group as Hartz 6686. In the second experiment, ten Korean cultivars, ten U.S. cultivars, and one introduced line were compared in the same way as the first experiment Disease severity ranking of check cultivars, Hartwig, PI 520733, and Hartz 6686, were the same as in the first experiment. Within Korean cultivars, seven cultivars showed the consistent severity proportions of leaf symptoms. Disease rankings of these cultivars in this experiment were the same as those in the first experiment. Three US cultivars: Hartwig, Hartz 5454, and Forrest, three Korean cultivars: Keunolkong, Myeongjunamulkong, and Jinpumkong 2, and one introduced line, PI 520733, were included in the highest SDS resistant group. Shinphaldalkong 2, Milyang 87, and Samnamkong consistently showed the highest SDS susceptibility in both experiments. Average disease severity in the first and the second experiment were 49.56% and 45.39%, respectively.

  • PDF

Studies on Development of Antagonistic Microorganism by Cell Fusion - Biological control of disease - ) (세포융합에 의한 신 길항미생물 육종에 관한 연구 - 목초 병해의 생물학적 방제 -)

  • 최기춘;이영환;전우복
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • This study was to investigate an effective biological control of forage diseases and provide a basic data and a model in improving variety of antagonistic bacteria, with growth promoting effect on forage, through cell fusion. The results obtained were summarized as follows; 1. The antagonistic himbacterium against soil-borne phathogenic fungi Fusarium oxysporum and Rhizoctonia solani was isolated from continuous cropping himsphere soil of forage, and its biological and physiological characteristics were investigated. This bacterium was identified as Bacillus subrilis and named BS 101. Another strain for cell fusion was Bacillus thur ingiensis ssp. kurstaki HD-I(BT 37669) with insecticidal crystal. 2. The auxotropic mutants of BS 101 and BT 37669 were derived after mutagenesis using N-methyl-N'nitro- Nitrosoguanidine(NTG) to give amino acid requirement marker. n e s e auxotropic mutants of BS 101 and BT 37669 were named BS 1013(his-) and BT 69(asp-), respectively. 3. The best protoplast requirement was obtained using DM 3 medium, containing 5% casamino acid, 1 M $MgCI_2$ and 2% bovine semm albumin, to give Fusant 3, 7 and 8. BT toxin gene was not identified with fusants by Southern blotting. However, SDS-PAGE analysis of strains showed various protein patterns among fusants. 4. From the dark culture experiment, growth of forage in inoculated soil with antagonistic bacteria was delayed than that of non-inoculated soil with antagonistic bacteria in each continuous cropping soil and in each sterilized soil. On the other hand, growth duration of forage was different between continuous cropping soil and sterilized soil. 5. Seed germination of Alfalfa, Italian ryegrass and Orchardgrass were significantly improved by inoculation of antagonistic bacteria(p< 0.05).

  • PDF

Gray Mold on Carrot Caused by Botrytis cinerea in Korea

  • Park, Kyeong-Hun;Ryu, Kyoung-Yul;Yun, Hye-Jeong;Yun, Jeong-Chul;Kim, Byeong-Seok;Jeong, Kyu-Sik;Kwon, Young-Seok;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.364-368
    • /
    • 2011
  • Gray mold caused by Botrytis cinerea was found on a carrot seedling in a greenhouse and a field at Daegwallryeong, Gangwon Province in 2007-2009. Symptoms included irregular, brown, blight, or chlorotic halo on leaves and petioles of the carrots. Fungal conidia were globose to subglobose or ellipsoid, hyaline or pale brown, nonseptate, one celled, $7.2-18.2{\times}4.5-11\;{\mu}m$ ($12.1{\times}8.3\;{\mu}m$) in size, and were formed on botryose heads. B. cinerea colonies were hyaline on PDA, and then turned gray and later changed dark gray or brown when spores appeared. The fungal growth stopped at $35^{\circ}C$, temperature range for proper growth was $15-25^{\circ}C$ on MEA and PDA. Carrots inoculated with $1{\times}10^5$ ml conidial suspension were incubated in a moist chamber at $25{\pm}1^{\circ}C$ for pathogenicity testing. Symptoms included irregular, brown, water-soaked rot on carrot roots and irregular, pale brown or dark brown, water-soaked rot on leaves. Symptoms were similar to the original symptoms under natural conditions. The pathogen was reisolated from diseased leaves, sliced roots, and whole roots after inoculation. As a result, this is the first report of carrot gray mold caused by B. cinerea in Korea.

Growth of Chaga Mushroom (Inonotus obliquus) on Betula platyphylla var. japonica (자작나무시루뻔버섯(차가버섯)을 접종한 자작나무로부터 버섯의 생장)

  • Ka, Kang-Hyeon;Jeon, Sung-Min;Park, Hyun;Lee, Bong-Hun;Ryu, Sung-Ryul
    • The Korean Journal of Mycology
    • /
    • v.45 no.3
    • /
    • pp.241-245
    • /
    • 2017
  • Chaga mushroom (Inonotus obliquus), which has invaluable medicinal uses, grows only on living trees. To date, it is still harvested from its natural habitat and is not cultivated artificially. We artificially cultivated chaga mushrooms by inoculating its sawdust spawns on Betula platyphylla var. japonica in 2007, and monitored mushroom growth on the inoculated trees for 9 years. The mushrooms grew less than 1 cm per year, with the largest mushroom growing up to 9 cm in the 9 years of study. There was no difference in the growth (diameter at breast height) of trees with viable and non-viable I. obliquus. In conclusion, artificial cultivation of chaga mushroom was successful. Our findings suggest that selection of large B. platyphylla var. japonica as host tree could lead to better I. obliquus productivity. Further improvements of the method are needed to increase the success rate of I. obliquus inoculation.

SPF 닭에서 재조합 H9N3 조류 인플루엔자 백신의 효능과 안전성 평가

  • Sin, Jeong-Hwa;Mo, In-Pil
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.90-91
    • /
    • 2006
  • To reduce the economic impact and control Low pathogenic avian influenza (LPAI), vaccination with inactivated vaccine has been considered in this country. We tried to develop inactivated vaccine with reassorted H9N3 AI virus which has different type of neuraminidase compare to those of field AI virus. Before reassorted vaccine was produced, we confirm the virus as master seed by limiting dilution, RT-PCR and sequencing method. Also, we evaluate the biological characteristics of the virus to find out the possibility of prevention against field infection of AI virus. Finally, we evaluate the safety and efficacy of the vaccine made of reassorted AI virus in the specific pathogen free (SPF) chickens. After limiting dilution, we choose RV7CE4 as a vaccine candidate and compare the gene sequence of this vaccine strain to those of AI05GA which is parents strain. Compared to amino acid sequences of specific gene of AI05GA and RV7CE4, exhibited a high degree of amino acid sequence homology. In the safety and efficacy test, there were no specific clinical signs or mortality. Reassorted H9N3 viruses were reisolated in cloaca swab on 5 days post inoculation. In the vaccine study, once or twice vaccination was performed and challenged with H9N2 field virus (01310). Vaccine has no adverse effect on birds and formed good immune capability which reduce viral shedding in the birds infected with 01310. Based on the above result, we developed reassorted H9N3 vaccine which will efficiently prevent the low pathogenic AIV (H9N2) infection in the poultry farms.

  • PDF

A Novel Medium for the Enhanced Production of Cyclosporin A by Tolypocladium inflatum MTCC 557 Using Solid State Fermentation

  • Survase, Shrikant A.;Shaligram, Nikhil S.;Pansuriya, Ruchir C.;Annapure, Uday S.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.462-467
    • /
    • 2009
  • Cyclosporin A (CyA) produced by Tolypocladium inflatum is a promising drug owing to its immunosuppressive and antifungal activities. From an industrial point of view, the necessity to obtain a suitable and economic medium for higher production of CyA was the aim of this work. The present study evaluated the effect of different fermentation parameters in solid state fermentation, such as selection of solid substrate, hydrolysis of substrates, initial moisture content, supplementation of salts, additional carbon, and nitrogen sources, as well as the inoculum age and size, on production of CyA by Tolypocladium inflatum MTCC 557. The fermentation was carried out at $25{\pm}2^{\circ}C$ for 9 days. A combination of hydrolyzed wheat bran flour and coconut oil cake (1:1) at 70% initial moisture content supported a maximum production of $3,872{\pm}156\;mg$ CyA/kg substrate as compared with $792{\pm}33\;mg/kg$ substrate before optimization. Furthermore, supplementation of salts, glycerol (1% w/w), and ammonium sulfate (1% w/w) increased the production of CyA to $5,454{\pm}75\;mg/kg$ substrate. Inoculation of 5 g of solid substrate with 6 ml of 72-h-old seed culture resulted in a maximum production of $6,480{\pm}95\;mg$ CyA/kg substrate.