• Title/Summary/Keyword: seed harvest time

Search Result 107, Processing Time 0.036 seconds

Variation of Seed Viability among Cone Harvest Times at Two Clonal Seed Orchards of Chamaecyparis obtusa

  • Da-Eun, Gu;Ji-Hee, Jeong;Ye-Ji, Kim;Kyu-Suk, Kang
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.4
    • /
    • pp.256-262
    • /
    • 2022
  • The timing of seed harvesting is an important decision in the management of seed orchards because it affects seed quality and yield. To investigate the effect of cone harvest time on seed quality and determine the optimal harvesting time, cones were regularly collected in seven times and germination tests were performed at each harvest time in two clonal seed orchards of Chamaecyparis obtusa. As cones developed, the percentage of seed germination increased before cone moisture content began to decrease significantly. The moisture contents of cones were highest at the first collection as 68.3% and 67.3% in Jeju and Gochang seed orchards respectively. At this time, germination speed was slowest, indicating poor seed vigour. The highest germination was found at the second stage in Jeju (36.5%) and at the seventh stage in Gochang (28.6%) seed orchard. The germination speed increased as cone moisture content decreased. Additionally, changes of seed vigour differed among the developmental stages in both seed orchards. Consequently, the optimal cone harvest time of C. obtusa seed orchards in Jeju was early September when high germination percentage was obtained. In Gochang seed orchards, late October was optimal cone harvest time when the germination speed was fast and the cone moisture content decreased.

Influence of Rainfall During the Ripening Stage on Pre-Harvest Sprouting, Seed Quality, and Longevity of Rice (Oryza sativa L.)

  • Baek, Jung-Sun;Chung, Nam-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.406-412
    • /
    • 2014
  • The influence of rainfall during the ripening stage on pre-harvest sprouting, seed viability, and seed quality was investigated in two Korean rice cultivars, Shindongjin and Hopum. When the rainfall was artificially treated in a greenhouse, HP started to pre-harvest sprouting at three days of rainfall treatment (DRT), but Shindongjin did not show pre-harvest sprouting at 40 DAH treatment and just 0.3~0.8% at 50 DAH, which was much lower than 15.3~25.8% of Hopum in the same treatment. After harvest, the seed germination of Hopum decreased about 10~25% compared to non-treated seeds, but that of Shindongjin decreased much little rate than that of Hopum. The seed longevity tested by accelerated aging decreased with prolonged rainfall period in both cultivars, but the varietal difference was clear; Shindongjin could withstand longer accelerated aging than Hopum. Shindongjin maintained its germination (>50%) ability after 15 days of accelerated aging regardless of the rainfall treatment period and time, but Hopum dropped below 50% germination ability after only 5 days of accelerated aging. In conclusion, rainfall during the ripening stage induced not only pre-harvest sprouting, but also reduced seed quality and longevity during storage, which varied between two cultivars.

Effects of Harvesting Time on Seed Yield, Seed Germination and Seedling Growth of Rye (Secale cereale L.) (호밀 수확시기가 종실의 수량과 발아 및 유묘생장에 미치는 영향)

  • ;Kwang-He Kang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.2
    • /
    • pp.126-133
    • /
    • 1988
  • To know the optimum harvest time for seed yield and seed quality a local variety of rye 'Paldang-homil'was harvested at seven different harvest times from 25 to 55 day after heading (DAH) at five-day intervals in 1984 ani 1986. Seed development, seed germination and seedling growth were observed. The l000-grain weight increased as harvest time delayed until 50 DAH in both years. Although grain yield tended to increase with delay of harvest time, the yield differences between succeding harvest time was highest between 40 DAH and 45 DAH. Germination rate of seeds harvested before 30 DAH were lower than those after 35 DAH at 20 C, but at 10 and 30 C before 35 DAH were lower after 40 DAH. Plant height and dry weight of seedlings increased with delay of harvest time up to 45 DAH in pot. Heading stages were similar among the seeds harvested 40-55 DAH. Culm length was not different among the harvest times. The optimum harvest time for seed production of rye seems to be 45 DAH (38 days after flowering).

  • PDF

Optimum Harvest Time for High Quality Seed Production of Sweet and Super Sweet Corn Hybrids

  • Lee Suk Soon;Yun Sang Hee;Seo Jung Moon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.373-380
    • /
    • 2004
  • The production of sweet (su) and super sweet corns (sh2) has been economically feasible in Korea in recent years. Major factors limiting super sweet corn production are low germination and low seedling vigor. Since seed quality is closely related to seed maturity, the optimum harvest time for the seed production of sweet and super sweet corns was studied and the quality of seeds with varying maturities was investigated in 2001 and 2002 cropping seasons. The parents of the sweet corn seeds were Hybrid Early Sunglow and 'Golden Cross Bantam 70' and those of super sweet corn were Xtrasweet 82 and 'For­tune'. Seeds were harvested at 21, 28, 35, 42, 49, and 56 days after silking (DAS). As the seeds developed, seed weight of sweet corn increased and the seed moisture content decreased faster than that of super sweet corn. Germination rates of sweet corn seeds harvested 21 and 28 DAS at $25^{\circ}C$ and emergence rates in the cold soil test were significantly lower than those of seeds harvested after 42 DAS in both years. Although the germination rates of super sweet corn seeds with varying maturities showed similar patterns as sweet corn seeds at $25^{\circ}C$, the emergence rate of super sweet corn seeds in cold soil test continuously increased with seed maturity. This suggests that seed quality of super sweet corn should be tested in a cold soil test to estimate field emergence. As the seeds developed, leakage of total sugars and electrolytes from the both sweet and super sweet corn seeds decreased up to 42 or 49 DAS. The $\alpha-amylase$ activities of both sweet and super sweet corn seeds increased with seed maturity from 21 to 35 or 49 DAS depending on genotype and year. The optimum harvest time for the seed production of sweet corn was 42 DAS and 49 DAS for super sweet corn considering emergence rate and plumule dry weight in the cold soil test, leakage of sugars and electrolytes from the seeds, and $\alpha-amylase$ activity.

Effect of Harvest Time on Yield Components and Quality in 'Heuksaeng', the Purple-Skin Peanut Variety

  • Oh, Eunyoung;Pae, Suk-Bok;Park, Jae Eun;Kim, Jung-In;Kim, Sungup;Lee, Myoung-Hee;Ha, Tae Joung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.248-254
    • /
    • 2020
  • This study was conducted to investigate the impact of harvest time on yield and seed quality in purple seed coat peanut. Compared to the average Virginia peanut variety, 'Heuksaeng', purple peanut variety has been reported to experience yield loss and reduced seed quality under delayed harvest. We examined the yield components and seed quality at different harvest times from 70 to 110 days after flowering (DAF), with harvesting occurring at intervals of 10 days. The number of mature pods per plant reached a maximum of 51.0 at 80 DAF, and average pod and seed yield peaked at 80 DAF with values of 5,229 and 3,532 kg per ha, respectively. Seed quality drastically decreased after 100 DAF, and the concentrations of two major anthocyanin compounds were significantly lower under delayed harvest. The antioxidative activities of DPPH and ABTS decreased to only 69 and 83% of their maximum values at 110 DAF. On the basis of these results, we recommend that 'Heuksaeng' is harvested approximately 10 to 15 days earlier that average Virginia-type cultivars to obtain the highest yield while minimizing the deterioration of seed quality.

An Optimum Harvest Time for Chinese Milk Vetch (Astragalus sinicus L.) Seed Production (자운영 종자생산을 위한 적정 수확시기 구명)

  • Lee, Byung-Jin;Choi, Zhin-Ryong;Kim, Sang-Yeol;Oh, Seong-Hwan;Kim, Jun-Hwan;Hwang, Woon-Ha;Ahn, Jong-Woong;Oh, Byeong-Geun;Ku, Yeon-Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.70-74
    • /
    • 2008
  • To determine an optimum harvest time for chinese milk vetch (CMV) seed production, the seeds were harvested at 4 times, according to 25, 30, 35, and 40 day after flowering (DAF), in Miryang, southern part of Korea. CMV plants were manually harvested at each time and seed threshing was done by rice threshing machine. Seed yield, 1,000-seed weight, germinability, and hard coat ratio were investigated. Seed yield was the highest, 53.9 kg/300 kg by dry weight (DW) of CMV plant, at 35 DAF. 1,000-seed weight increased according to seed harvest time from 25 DAF to 40 DAF when it was 3.10 g. The germination ratios of seeds harvested at 4 times were not significantly different when the seeds stored until August 1. In case of long period of CMV seeds stored, the seeds harvested later showed higher germination rate. On the other hand, because the hard coat ratio causing germination inhibition was declined with an increase of storage period, it was higher in the seeds harvested later. There was no difference among the seeds harvested at 4 times at October 1. In conclusion, it was presumed that an optimum harvest time for CMV seed production should be at 35 DAF considering seed yield, weight and germinability.

Influences of Different Planting Times on Harvest Index and Yield Determination Factors in Soybean

  • Park, Sei-Joon;Kim, Wook-Han;Seong, Rak-Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • This experiment was conducted to investigate the changes of harvest index and the relationship between harvest index and yield determination factors by different planting times in the determinate soybean cultivars, Shinpaldal and Danbaeg. Optimum planting were 23 May in 1995 and 1996. Late planting were 13 June in 1995 and 6 June in 1996. Growth period from planting to physiological maturity (R7) was shortened as planting time was delayed in two cultivars due to shortening of reproductive growth period in Shinpaldal, and of vegetative growth period in Danbaeg. Stem weight was distinctly decreased in late planting compared to optimum planting, but seed weight of both cultivars was not different between planting times. Also, seed number per pod and harvest index were significantly increased in late planting and the high correlation was found between two factors. It was suggested that increase of harvest index in late planting would be related with high assimilate use efficiency due to increase of sink capacity. The results of correlation and principal component analysis for yield determination factors showed that main factor on yield determination was pod number per plant at R5 stage associated with dry matter accumulation during early reproductive growth period, seed number per pod and harvest index were the second factor, and one hundred seed weight was the third factor. The result of this experiment indicated that yield determination in soy-bean was dependent mainly on pod number per plant related to dry matter accumulation by early reproductive growth period, and the increase of seed number per pod and harvest index could compensate for yield decrease by shortening of vegetative growth period in late planting. Such result suggests that optimum planting date can be delayed from mid May to early June in improved soybean cultivars in Korea.

  • PDF

An Establishment of the Optimum Sowing Time for a Machine Harvest of Perilla for Seed (종실용 들깨의 기계수확에 적합한 최적 파종시기 설정)

  • Kwak, Kang Su;Han, Won Young;Ryu, Jong Soo;Bae, Jin Woo;Park, Jin Ki;Baek, In Youl
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.370-375
    • /
    • 2018
  • In order to promote the mechanized cultivation of perilla for seed, which has been increasing in cultivation area and production recently as demand increases according to the health-functional effects, we carried out this experiment to determine the optimum sowing time of perilla to minimize the seed loss at harvest and increase the yield. We used two different types of perilla varieties, 'Sodam(small-branch)' and 'Deulsaem(multi-branch)', and the sowing time was June 15, June 30, July 15 and August 1. As the sowing time is late, days of growth from sowing to flowering were shortened, and they were shortened from 14, 26 and 31~32 days on June 30, July 15 and August 1 as compared with June 15, respectively. And, the stem length and culm diameter were shortened or tapered and the number of nodes tended to decrease. The number of effective branch was 82%, 61% and 56% on June 30, July 15 and August 1 as compared with June 15, respectively. Accordingly, it seems to make against in securing the yield from July 15. And, the lowest cluster height was generally shorter as the sowing time is late, and the height was below 15cm on July 15 and August 1. It seems that this may work against the machine harvest. There was a high degree of significance between the sowing time and the yield. Although, the total yield was not statistically significant among June 15, June 30 and July 15, the ratio of shattering seed at harvest was in order of July 15, August 1(30.3%)> June 15(15.3%)> June 30(13.5%). Therefore, the net yield except for shattered seed was higher in order of June 30${\geq}$ June 15> July 15> August 1. This tendency was characteristic regardless of variety and sowing method. And, the protein content in perilla seed increased as the sowing time was delayed, and the content was the highest on August 1. The content of crude fat was relatively high on June 15 and July 15 in 'Sodam', and June 30 and July 15 in 'Deulsaem', respectively. And, the content of linolenic acid was found to be the highest on August 1. As a result, the optimal sowing time for machine harvest of perilla for seed is about June 30. At this time, it is determined that the sowing time is the most suitable to be advantageous in increasing the yield of perilla seed, while minimizing the seed loss due to the shattering at harvest.

Effect of Cultural Practice and Harvest Time on Yield Components of Peanut (땅콩의 재배방법 및 수확시기가 수량구성 형질에 미치는 영향)

  • Jeong-Hae Oh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.4
    • /
    • pp.347-354
    • /
    • 1992
  • Late harvest in peanut has often resulted in reduced yield and dissipation of labor by virtue of increasing over-matured pods causing the pod shattering. Present study was conducted to obtain a basic information for deciding optimum harvest time of the peanut in Chungbuk province by examination of yield components at different harvest time of leading cultivars Saedl and Youngho cultivated with vinyl mulching or non-mulching conditions. Peg number and pod number were significantly increased by vinyl mulching and also significantly different by the harvest time. Pod number increased with the lapse of days after flowering was gradually decreased from 100 days after flowering in saedl and 110 days in Youngho. Number of seed-bearing pods and matured seed percent were significantly increased by vinyl mulching and had tendency to increase with the lapse of days after flowering. There was no significant difference in number of over-matured pods and pod shattering percent between vinyl mulching and non-mulching. They increased drastically in 110 days after flowering in Saedl, but in 120 days after flowering in Youngho, Increase in 100 seed weight by vinyl mulching was statistically nonsignificant in both varieties, however, total seed yield was significantly increased by vinyl mulching, showing maximum yield in 100 days after flowering in the variety Saedl and 110 days in Youngho, respectively, Seed yield was negatively correlated to peg number and positively correlated to pod number, seed-bearing pod number, pod shattering percent, matured seed percent and 100 seed weight, respectively.

  • PDF

Effect of Harvest Time on Seed Quality of Silage Corn Inbreds and Hybrids

  • Lee, Suk-Soon;Yun, Sang-Hee;Soo, Jung-Moon;Min, Hwang-Kee;Ryu, Si-Hwan;Park, Jong-Yeol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.361-367
    • /
    • 2002
  • In order to determine the optimum harvest time for the seed production of inbreds and hybrids in silage corn, the ears of sib-pollinated 'KS5', 'KS7rhm', and 'Ga209' and cross-pollinated 'KS5' $\times$ 'KS6' (Suwon19), 'KS7 rhm' $\times$ 'KSl17' (Suwonok), and 'Ga209' $\times$ 'DB544'(Kwanganok) were harvested at the one-week intervals from 4 to 10 weeks after silking. The optimum harvest time for the seed production for 'KS5', 'KS5' $\times$ 'KS6', 'KS7 rhm', and 'KS7rhm' $\times$ 'KS117' was 7 weeks after silking considering both emergence rate and plumule growth in cold test. Although earlier harvested seeds showed similar germination rate as the seeds harvested at the optimum time at $25^{\circ}C$, their emergence rate were lower in cold test. Seed weight and $\alpha$-amylase activity of earlier harvested seeds were lower compared to those of seeds harvested at the optimum time, while leakage of total sugars and electrolytes were higher. However, the later harvested seeds showed lower germination rates at $25^{\circ}C$ and emergence rates in cold test probably due to the lower $\alpha$-amylase activity although they showed increased seed weight and reduced leakage of total sugars and electrolytes. In contrast, the emergence rate of 'Ga209' and 'Ga209' $\times$ 'DB544' in cold test increased up to 10 weeks after silking probably due to the increased seed weight and $\alpha$-amylase activity and reduced sugar and electrolyte leakages during the germination. The cross-pollinated F$_1$ hybrid seeds showed higher germination and emergence rates at $25^{\circ}C$ and in cold test, and higher plumule growth and $\alpha$-amylase activity compared to those of sib-pollinated inbreds.