• Title/Summary/Keyword: seed biochemistry

Search Result 69, Processing Time 0.026 seconds

Quality Improvement of Crude Glycerol from Biodiesel Production Using Activated Carbon Derived from Krabok (Irvingia malayana) Seed Shells

  • Wuttichai Roschat;Sarunya Donrussamee;Phatcharanan Smanmit;Samlit Jikjak;Tappagorn Leelatam;Sunti Phewphong;Krittiyanee Namwongsa;Preecha Moonsin;Vinich Promarak
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.

Cold-Adapted and Rhizosphere-Competent Strain of Rahnella sp. with Broad-Spectrum Plant Growth-Promotion Potential

  • Vyas, Pratibha;Joshi, Robin;Sharma, K.C.;Rahi, Praveen;Gulati, Ashu;Gulati, Arvind
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1724-1734
    • /
    • 2010
  • A phosphate-solubilizing bacterial strain isolated from Hippophae rhamnoides rhizosphere was identified as Rahnella sp. based on its phenotypic features and 16S rRNA gene sequence. The bacterial strain showed the growth characteristics of a cold-adapted psychrotroph, with the multiple plant growth-promoting traits of inorganic and organic phosphate solubilization, 1-aminocyclopropane-1-carboxylate-deaminase activity, ammonia generation, and siderophore production. The strain also produced indole-3-acetic acid, indole-3-acetaldehyde, indole-3-acetamide, indole-3-acetonitrile, indole-3-lactic acid, and indole-3-pyruvic acid in tryptophan-supplemented nutrient broth. Gluconic, citric and isocitric acids were the major organic acids detected during tricalcium phosphate solubilization. A rifampicin-resistant mutant of the strain exhibited high rhizosphere competence without disturbance to the resident microbial populations in pea rhizosphere. Seed bacterization with a charcoal-based inoculum significantly increased growth in barley, chickpea, pea, and maize under the controlled environment. Microplot testing of the inoculum at two different locations in pea also showed significant increase in growth and yield. The attributes of cold-tolerance, high rhizosphere competence, and broad-spectrum plant growth-promoting activity exhibited the potential of Rahnella sp. BIHB 783 for increasing agriculture productivity.

Plant quarantine isolated cultivation system in Korea and results of recorded in 2005-2012 (우리나라 식물검역 격리재배 시스템과 2005-2012년 실적보고)

  • Lee, Siwon;Park, Jungan;Lee, O-Mi;Shin, Yong-Gil
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.281-287
    • /
    • 2013
  • In Korea, isolated cultivation has been implemented for 102 genera, including about 250 species, each of which has underwent microscopic inspection, cultivation of bacteria in selective medium, analysis of physiology and biochemistry, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). The number of isolated microorganisms was 8,307 in the period of 2005-2012, and bulbs and tubers had the greatest diversity of microorganisms, of 5,165 (62.2%), followed by 2,119 (25.0%) sapling, 796 (9.6%) seed, 150 (1.8%) cutting slip, 70 (0.8%) branch graft and 7 (0.1%). The number of cases which were disqualified were 413 (4.97%), after the detection of 47 disease causing species of microorganism. Viruses predominated, with 27 species, followed by 16 fungi, a viroid, a Chromalveolata and 2 further species. Top on the list of detection was Arabis mosaic virus (77 cases), followed by Tobacco rattle virus (70 cases), Lily symptomless virus (46 cases) and Penicillium expansum (46 cases).

The Inhibitory Effect of Grapefruit Seed Extracts on the Physiological Function of Enterobacter pyrinus (Grapefruit 종자추출물이 Enterobacter pyrinus의 생리기능에 미치는 영향)

  • Lee, Tae-Ho;Jeong, Sook-Jung;Lee, Sang-Yeol;Kim, Jae-Won;Cho, Sung-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.985-990
    • /
    • 1995
  • Grapefruit seed extracts(GFSE) have some unknown compounds which exhibit the antibiotic activities aganist microorganisms including bacteria and fungi. We have examined the effects of GFSE on the growth of Enterobacter pyrinus which was isolated from necrotic lesions of pear trees. During the cultivation, the growth of the bacteria was strongly inhibited at the low concentration(0.01%, w/w) of GFSE. Hydrophobic fraction extracted from GFSE by mixed solvents (chloroform : methanol : water, 1 : 2 : 0.8, v/v/v) had components which inhibited the growth of bacteria. There was, however, no inhibitory effect of GFSE on the activities of several enzymes including hexokinase, glucose 6-phosphate dehydrogenase, malate dehydrogenase and succinate dehydrogenase. $O-nitrophenyl-{\beta}-D-galactopyranoside(ONPG)$, the artificial substrate of ${\beta}-galactosidase$ was hydrolyzed in the presence of GFSE, indicating that the membrane was pertubated by the GFSE. From the results it was suggested that the antibiotic activity of GFSE is due to the change of membrane permeability of cell. GFSE was fractionated by high performance liquid chromatography equipped with $C_{18}$ reverse phase column. Among active fractions, three peaks were identified as 1-chloro-2-methyl-benzene (o-toluene), N,N-dimethyl-benzenemethaneamine, 1-[2-(2-ethylethoxy)ethoxy]-4- (1,1,3,3-tetramethyl)-bezene, respectively, while the other three remained unidentified.

  • PDF

Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation

  • Bhak, Ghi-Bom;Choe, Young-Jun;Paik, Seung-R.
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.541-551
    • /
    • 2009
  • Amyloidogenesis defines a condition in which a soluble and innocuous protein turns to insoluble protein aggregates known as amyloid fibrils. This protein suprastructure derived via chemically specific molecular self-assembly process has been commonly observed in various neurodegenerative disorders such as Alzheimer's, Parkinson's, and Prion diseases. Although the major culprit for the cellular degeneration in the diseases remains unsettled, amyloidogenesis is considered to be etiologically involved. Recent recognition of fibrillar polymorphism observed mostly from in vitro amyloidogeneses may indicate that multiple mechanisms for the amyloid fibril formation would be operated. Nucleation-dependent fibrillation is the prevalent model for assessing the self-assembly process. Following thermodynamically unfavorable seed formation, monomeric polypeptides bind to the seeds by exerting structural adjustments to the template, which leads to accelerated amyloid fibril formation. In this review, we propose another in vitro model of amyloidogenesis named double-concerted fibrillation. Here, two consecutive assembly processes of monomers and subsequent oligomeric species are responsible for the amyloid fibril formation of $\alpha$-synuclein, a pathological component of Parkinson's disease, following structural rearrangement within the oligomers which then act as a growing unit for the fibrillation.

Thermal Stability of Phaseolus vulgaris Leucoagglutinin: a Differential Scanning Calorimetry Study

  • Biswas, Shyamasri;Kayastha, Arvind M.
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.472-475
    • /
    • 2002
  • Phaseolus vulgaris phytohemagglutinin L is a homotetrameric-leucoagglutinating seed lectin. Its three-dimensional structure shows similarity with other members of the legume lectin family. The tetrameric form of this lectin is pH dependent. Gel filtration results showed that the protein exists in its dimeric state at pH 2.5 and as a tetramer at pH 7.2. Contrary to earlier reports on legume lectins that possess canonical dimers, thermal denaturation studies show that the refolding of phytohemagglutinin L at neutral pH is irreversible. Differential scanning calorimetry (DSC) was used to study the denaturation of this lectin as a function of pH that ranged from 2.0 to 3.0. The lectin was found to be extremely thermostable with a transition temperature around $82^{\circ}C$ and above $100^{\circ}C$ at pH 2.5 and 7.2, respectively. The ratio of calorimetric to vant Hoff enthalpy could not be calculated because of its irreversible-folding behavior. However, from the DSC data, it was discovered that the protein remains in its compact-folded state, even at pH 2.3, with the onset of denaturation occurring at $60^{\circ}C$.

An L-Type Thioltransferase from Arabidopsis thaliana Leaves

  • Kim, Tae-Soo;Cho, Young-Wook;Kim, Joon-Chul;Jin, Chang-Duck;Han, Tae-Jin;Park, Soo-Sun;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.605-609
    • /
    • 1999
  • Thioltransferase, also called glutaredoxin, is a general GSH-disulfide reductase of importance for redox regulation. Previously, the protein thioltransferase, now called S-type thioltransferase, was purified and characterized from Arabidopsis thaliana seed. In the present study, a second thioltransferase, called L-type thioltransferase, was purified to homogeneity from Arabidopsis thaliana leaves. The purification procedures included DEAE-cellulose ion-exchange chromatography, Sephadex G-50 gel filtration, and glutathione-agarose affinity chromatography. The purified enzyme was confirmed to show a unique band on SDS-PAGE and its molecular weight was estimated to be 26.6 kDa, which appeared to be atypical compared with those of most other thioltransferase. It could utilize 2-hydroxyethyl disulfide, S-sulfocysteine, and insulin as substrates, and also contained dehydroascorbate reductase activity. Its optimum pH was 8.5 and its activity was greatly activated by L-cysteine. When it was kept for 30 min, it appeared to be very stable up to $70^{\circ}C$. It was activated by $MgCl_2$ and, on the contrary, inhibited by $ZnCl_2$, $MnCl_2$, and $AlCl_3$.

  • PDF

Submerged Monoxenic Culture Medium Development for Heterorhabditis bacteriophora and its Symbiotic Bacterium Photorhabdus luminescens: Protein Sources

  • Cho, Chun-Hwi;Whang, Kyung-Sook;Gaugler, Randy;Yoo, Sun-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.869-873
    • /
    • 2011
  • Most medium formulations for improving culture of entomopathogenic nematodes (EPN) based on protein sources have used enriched media like animal feed such as dried egg yolk, lactalbumin, and liver extract, among other ingredients. Most results, however, showed unstable yields and longer production time. Many of the results do not show the detailed parameters of fermentation. Soy flour, cotton seed flour, corn gluten meal, casein powder, soytone, peptone, casein hydrolysates, and lactalbumin hydrolysate as protein sources were tested to determine the source to support optimal symbiotic bacteria and nematode growth. The protein hydrolysates selected did not improve bacterial cell mass compared with the yeast extract control, but soy flour was the best, showing 75.1% recovery and producing more bacterial cell number ($1.4{\times}10^9$/ml) than all other sources. The highest yield ($1.85{\times}10^5$ IJs/ml), yield coefficient ($1.67{\times}10^6$ IJs/g medium), and productivity ($1.32{\times}10^7$ IJs/l/day) were also achieved at enriched medium with soybean protein.

Isolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stresses

  • Pulla, Rama Krishna;Kim, Yu-Jin;Kim, Myung-Kyum;Senthil, Kalai Selvi;In, Jun-Gyo;Yang, Deok-Chun
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.338-343
    • /
    • 2008
  • Dehydrins (DHNs) compose a family of intrinsically unstructured proteins that have high water solubility and accumulate during late seed development at low temperature or in water-deficit conditions. They are believed to play a protective role in freezing and drought-tolerance in plants. A full-length cDNA encoding DHN (designated as ClDhn) was isolated from an oriental medicinal plant Codonopsis lanceolata, which has been used widely in Asia for its anticancer and anti-inflammatory properties. The full-length cDNA of ClDhn was 813 bp and contained a 477 bp open reading frame (ORF) encoding a polypeptide of 159 amino acids. Deduced ClDhn protein had high similarities with other plant DHNs. RT-PCR analysis showed that different abiotic stresses such as salt, wounding, chilling and light, triggered a significant induction of ClDhn at different time points within 4-48 hrs post-treatment. This study revealed that ClDhn assisted C. lanceolata in becoming resistant to dehydration.

Post-transcriptional and translational regulation of mRNA-like long non-coding RNAs by microRNAs in early developmental stages of zebrafish embryos

  • Lee, Kyung-Tae;Nam, Jin-Wu
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • At the post-transcriptional and translational levels, microRNA (miRNA) represses protein-coding genes via seed pairing to the 3' untranslated regions (UTRs) of mRNA. Although working models of miRNA-mediated gene silencing are successfully established using miRNA transfections and knockouts, the regulatory interaction between miRNA and long non-coding RNA (lncRNA) remain unknown. In particular, how the mRNA-resembling lncRNAs with 5' cap, 3' poly(A)-tail, or coding features, are regulated by miRNA is yet to be examined. We therefore investigated the functional interaction between miRNAs and lncRNAs with/without those features, in miRNA-transfected early zebrafish embryos. We observed that the greatest determinants of the miRNA-mediated silencing of lncRNAs were the 5' cap and 3' poly(A)-tails in lncRNAs, at both the post-transcriptional and translational levels. The lncRNAs confirmed to contain 5' cap, 3' poly(A)-tail, and the canonical miRNA target sites, were observed to be repressed in the level of both RNA and ribosome-protected fragment, while those with the miRNA target sites and without 5' cap and 3' poly(A)-tail, were not robustly repressed by miRNA introduction, thus suggesting a role as a miRNA-decoy.