• 제목/요약/키워드: sediment deposition rate

검색결과 64건 처리시간 0.027초

An automatic rotating annular flume for cohesive sediment erosion experiments: Calibration and preliminary results

  • Steven Figueroa;Minwoo Son
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.319-319
    • /
    • 2023
  • Flows of water in the environment (e.g. in a river or estuary) generally occur in complex conditions. This complexity can hinder a general understanding of flows and their related sedimentary processes, such as erosion and deposition. To gain insight in simplified, controlled conditions, hydraulic flumes are a popular type of laboratory research equipment. Linear flumes use pumps to recirculation water. This isn't appropriate for the investigation of cohesive sediments as pumps can break fragile cohesive sediment flocs. To overcome this limitation, the rotating annular flume (RAF) was developed. While not having pumps, a side-effect is that unwanted secondary circulations can occur. To counteract this, the top and bottom lid rotate in opposite directions. Furthermore, a larger flume is considered better as it has less curvature and secondary circulation. While only a few RAFs exist, they are important for theoretical research which often underlies numerical models. Many of the first-generation of RAFs have come into disrepair. As new measurement techniques and models become available, there is still a need to research cohesive sediment erosion and deposition in facilities such as a RAF. New RAFs also can have the advantage of being automatic instead of manually operated, thus improving data quality. To further advance our understanding of cohesive sediment erosion and deposition processes, a large, automatic RAF (1.72 m radius, 0.495 m channel depth, 0.275 m channel width) has been constructed at the Hydraulic Laboratory at Chungnam National University (CNU), Korea. The RAF has the ability to simulate both unidirectional (river) and bidirectional (tide) flows with supporting instrumentation for measuring turbulence, bed shear stress, suspended sediment concentraiton, floc size, bed level, and bed density. Here we present the current status and future prospect of the CNU RAF. In the future, calibration of the rotation rate with bed shear stress and experiments with unidirectional and bidirectional flow using cohesive kaolinite are expected. Preliminary results indicate that the CNU RAF is a valuable tool for fundamental cohesive sediment transport research.

  • PDF

MODELING LONG-TERM PAH ATTENUATION IN ESTUARINE SEDIMENT, CASE STUDY: ELIZABETH RIVER, VA

  • WANG P.F;CHOI WOO-HEE;LEATHER JIM;KIRTAY VIKKI
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회(2)
    • /
    • pp.1189-1192
    • /
    • 2005
  • Due to their slow degradation properties, hydrophobic organic contaminants in estuarine sediment have been a concern for risks to human health and aquatic organisms. Studies of fate and transport of these contaminants in estuaries are further complicated by the fact that hydrodynamics and sediment transport processes in these regions are complex, involving processes with various temporal and spatial scales. In order to simulate and quantify long-term attenuation of Polycyclic Aromatic Hydrocarbons (PAH) in the Elizabeth River, VA, we develop a modeling approach, which employs the U.S. Environmental Protection Agency's water quality model, WASP, and encompasses key physical and chemical processes that govern long-term fate and transport of PAHs in the river. In this box-model configuration, freshwater inflows mix with ocean saline water and tidally averaged dispersion coefficients are obtained by calibration using measured salinity data. Sediment core field data is used to estimate the net deposition/erosion rate, treating only either the gross resuspension or deposition rate as the calibration parameter. Once calibrated, the model simulates fate and transport PAHs following the loading input to the river in 1967, nearly 4 decades ago. Sediment PAH concentrations are simulated over 1967-2022 and model results for Year 2002 are compared with field data measured at various locations of the river during that year. Sediment concentrations for Year 2012 and 2022 are also projected for various remedial actions. Since all the model parameters are based on empirical field data, model predictions should reflect responses based on the assumptions that have been governing the fate and sediment transport for the past decades.

  • PDF

Long-term Sediment Discharge Analysis in Yongdam Dam Watershed due to Climate Change

  • Felix, Micah Lourdes;Kim, Joocheol;Choi, Mikyoung;Jung, Kwansue
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.327-327
    • /
    • 2020
  • Increase in Earth's surface temperature, higher rainfall intensity rate, and rapid changes in land cover are just some of the most evident effects of climate change. Flooding, and river sedimentation are two inevitable natural processes in our environment, and both issues poses great risks in the dam industry when not addressed properly. River sedimentation is a significant issue that causes reservoir deposition, and thus causes the dam to gradually lose its ability to store water. In this study, the long-term effects of climate change on the sediment discharge in Yongdam Dam watershed is analyzed through the utilization of SWAT, a semi-distributed watershed model. Based from the results of this study, an abrupt increase on the annual sediment inflow trend in Yongdam Dam watershed was observed; which may suggests that due to the effects of climate change, higher rainfall intensity, land use and land cover changes, the sedimentation rate also increased. An efficient sedimentation management should consider the increasing trend in sedimentation rate due to the effects of climate change.

  • PDF

호남지방의 저수지의 매몰상황과 저수량에 관한 조사연구 (Studies on t Sediment Deposit and Storage Capacity of the Honam Province)

  • 이창구
    • 기술사
    • /
    • 제3권10호
    • /
    • pp.7-17
    • /
    • 1970
  • Fourteen reservoirs maintained by the local land improvement associations in the province of Chullabuk-Do and 20 reservoirs maintained by those in the province of Chullanam-Do, were surveyed in connection with a correction between storage capacity and sediment deposit. In addition to this survey, 3347 of small scale reservoirs, that lie scattered around in the above mentioned two provinces were investigated by using existing records pertaining to storage capacity in the office of City and Country, respectively. According to this inrestigation. the following conclusions are derived. 1. A sediment deposition rate is high, being about 10.63m$^3$/ha of drainage area, and resulting in the average decrease of storage capacity by 27.5%. This high rate of deposition could be mainly attributed to the severe denudation of forests due to disorderly cuttings of trees. Especially, in small scale reservoirs, an original average design storage depth of 197mm in irrigation water depth is decreased to about 140mm. 2. An average unit storage depth of 325.6mm as the time of initial construction is decreased to 226mm at present. This phenomena causes a greater shortage of gation water, since it was assumed that original storage quantity itself was already in short.

  • PDF

Modeling of Fine Sediment Transport under Multiple Breakwaters of Surface-Piercing Type

  • Lee, J. L.;Oh, M. R.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.557-562
    • /
    • 2004
  • A surface-piercing barrier model is presented for understanding morphological development in the sheltered region and investigating the main factors causing the severe accumulation. Surface-piercing structures like vertical barriers, surface docks and floating breakwaters are recently favored from the point of view of a marine scenario since they do not in general partition the natural sea. The numerical solutions are compared with experimental data on wave profiles and morphological change rates within a rectangular harbor of a constant depth protected by surface-piercing thin breakwaters as a simplified problem. Our numerical study involves several modules: 1) wave dynamics analyzed by a plane-wave approximation, 2) suspended sediment transport combined with sediment erosion-deposition model, and 3) concurrent morphological changes. Scattering waves are solved by using a plane wave method without inclusion of evanescent modes. Evanescent modes are only considered in predicting the reflection ratio against the vertical barrier and energy losses due to vortex shedding from the lower edge of plate are taken into account. A new relationship to relate the near-bed concentration to the depth-mean concentration is presented by analyzing the vertical structure of concentration. The numerical solutions were also compared with experimental data on morphological changes within a rectangular harbor of constant water depth. Through the numerical experiments, the vortex-induced flow appears to be not ignorable in predicting the morphological changes although the immersion depth of a plate is not deep.

  • PDF

저수위시 노출된 저수지 저니 상의 식생과 구리(Cu)의 흡수 (Absorption of Copper(Cu) by Vegetation on Reservoir Sediment Exposed after Drawdown)

  • 이충우;차영일
    • 한국환경과학회지
    • /
    • 제2권2호
    • /
    • pp.123-133
    • /
    • 1993
  • Shingal reservoir is a relatively small (211ha) and shallow impoundment, and approximately 25 ha of its sediment is exposed after spring drawdown. At least 14 vascular p13n1 species germinate on the exposed sediment, but Persimria vulgaris Webb et Moq. quickly dominates the vegetation. In order to estimate the role of the vegetation in the dynamics of heavy metal pollutants in the reservoir, Cu concentration of water, fallout particles, exposed sediment, and tissues of p. vulgaris, Ivas analyzed. Cu content in reservoir water decreased from $13.10mg/m^2$ on May 15 (before dralvdown) to $3.08mg/m^2$ in June 1 (after drawdown), mainly due to the loiwering of water level. Average atmospheric deposition of Cu by fallout particles was $10.84 {\mu}g/m^2/day$. Cu content in the surface 15cm of exposed sediment decreased from $5.094g1m^2$ right after drawdown, to $0.530g/m^2$ in 41 days, which is a 89.6% decrease. Therefore up to 99.7% of Cu in the reservoir appears to exist in the sediment. only 0.3% in water If the rate of atmospheric Input by fallout particles is assumed to have been the same since 1958, when the reservoir was completed, cumulative input of Cu during the 38 years would have been $150.35mg/m^2$, which is only 3.0% of Cu content in sediment right after drawdown. Therefore, most of Cu in the Shingal reservoir must have been transported by the Shingal-chun flowing into the reservoir, Standing crop of vegetation on the exposed sediment 41 days after drawdown was $730.67g/m^2$, of which 630.91g/m2 was p. vulgaris alone, and Cu content in P vulgaris at this time was $6.612mg/m^2$. This was only 0.13% of Cu in the exposed sediment, but was 50.5% of Cu in water before drawdown, or 167% of the average annual input of Cu by atmospheric deposition. If other plants were assumed to absorb Cu to the same concentration as p. vulgaris, total amount of Cu absorbed in 41 days by vegetation on the exposed sediment is estimated to be 1913.3 g, which is a considerable contribution to the purification of the reservoir water.

  • PDF

저수위시 노출된 저수지 저니 상의 식생과 구리(Cu)의 흡수 (Absorption of Copper(Cu) by Vegetation on Reservoir Sediment Exposed after Drawdown)

  • 이충우;차영일
    • 한국환경과학회지
    • /
    • 제2권2호
    • /
    • pp.29-29
    • /
    • 1993
  • Shingal reservoir is a relatively small (211ha) and shallow impoundment, and approximately 25 ha of its sediment is exposed after spring drawdown. At least 14 vascular p13n1 species germinate on the exposed sediment, but Persimria vulgaris Webb et Moq. quickly dominates the vegetation. In order to estimate the role of the vegetation in the dynamics of heavy metal pollutants in the reservoir, Cu concentration of water, fallout particles, exposed sediment, and tissues of p. vulgaris, Ivas analyzed. Cu content in reservoir water decreased from $13.10mg/m^2$ on May 15 (before dralvdown) to $3.08mg/m^2$ in June 1 (after drawdown), mainly due to the loiwering of water level. Average atmospheric deposition of Cu by fallout particles was $10.84 {\mu}g/m^2/day$. Cu content in the surface 15cm of exposed sediment decreased from $5.094g1m^2$ right after drawdown, to $0.530g/m^2$ in 41 days, which is a 89.6% decrease. Therefore up to 99.7% of Cu in the reservoir appears to exist in the sediment. only 0.3% in water If the rate of atmospheric Input by fallout particles is assumed to have been the same since 1958, when the reservoir was completed, cumulative input of Cu during the 38 years would have been $150.35mg/m^2$, which is only 3.0% of Cu content in sediment right after drawdown. Therefore, most of Cu in the Shingal reservoir must have been transported by the Shingal-chun flowing into the reservoir, Standing crop of vegetation on the exposed sediment 41 days after drawdown was $730.67g/m^2$, of which 630.91g/m2 was p. vulgaris alone, and Cu content in P vulgaris at this time was $6.612mg/m^2$. This was only 0.13% of Cu in the exposed sediment, but was 50.5% of Cu in water before drawdown, or 167% of the average annual input of Cu by atmospheric deposition. If other plants were assumed to absorb Cu to the same concentration as p. vulgaris, total amount of Cu absorbed in 41 days by vegetation on the exposed sediment is estimated to be 1913.3 g, which is a considerable contribution to the purification of the reservoir water.

실내 모형실험을 통한 토석류 퇴적 특성 연구 (A Study on the Deposition Characteristics of Debris Flow Using Small-scaled Laboratory Test)

  • 장형준;유국현;이호진
    • 한국지반환경공학회 논문집
    • /
    • 제22권2호
    • /
    • pp.25-33
    • /
    • 2021
  • 본 연구는 토석류의 퇴적 특성을 파악하고 소단을 설치함에 따른 토석류 피해의 저감효과를 분석하기 위해 수행되었다. 다양한 수로경사 및 토사체적농도를 고려하여 수로실험을 수행하였으며, 소단 설치에 따른 토석류 피해의 저감효과를 분석하기 위해 소단을 설치하지 않은 경우와 소단을 설치한 경우를 비교하였다. 본 연구에서는 토석류의 퇴적 특성 중 도달거리, 총 이동거리 및 이동비에 대한 분석을 진행하였다. 먼저 수로경사 변화에 따른 토석류의 퇴적 특성을 분석하였고, 토사체적농도 변화에 따른 토석류의 퇴적 특성을 분석하였다. 또한, 소단을 설치하지 않은 경우를 기준으로 소단을 설치한 경우의 퇴적 특성 변화율을 산정하였다. 실험결과, 수로경사와 토사체적농도가 토석류의 퇴적 특성에 상당한 영향을 미치는 것을 확인하였다. 또한, 사면에 소단을 설치할 경우 토석류의 도달거리와 이동비가 크게 감소하였으며, 총 이동거리가 증가하였다. 이는 소단을 설치하는 것이 토석류의 이동을 지연시키고, 토석류의 잠재적인 이동성을 감소시키는 것을 의미한다. 본 연구의 결과는 토석류의 퇴적 특성을 이해하는 데 유용한 정보를 제공할 것이며, 나아가 소단의 설계에 도움을 줄 것으로 기대된다.

137Cs 낙녹(落鹿)을 이용(利用)한 퇴사율(堆砂率) 측정(測定)에 관(關)하여 (Determining Sediment Rate Using Cesium-137 Fallout at the Larto Lake)

  • 고문환
    • 한국토양비료학회지
    • /
    • 제15권4호
    • /
    • pp.207-212
    • /
    • 1982
  • 1950년대(年代)의 핵실험(核實驗)에 의(依)하여 생긴 방사능(放射能) 동위원소(同位元素)는 토양(土壤)이나 퇴사(堆砂)에 다양(多樣)하게 포함(包含)되었다. 이들 방사성(放射性) 동위원소(同位元素) 중(中)에서 $^{137}Cs$은 미세토양(微細土壤) 입자(粒子)에 고착(固着)하는 성질(性質)이 크고 방사능(放射能)의 발산량이 많고 균일(均一)하기 때문에 퇴사과정(堆砂過程)을 평가하는데 이용(利用)이 가능(可能)하다. 미국 Louisiana 주(州) Larto호(湖)에서, 낙진(落塵)된 $^{137}Cs$에 의(依)해 1958년(年) 이내로 퇴사속도(堆砂速度)를 측정(測定)한 바에 의(依)하면 연평균(年平均) 1.6~3.1cm로 퇴사(堆砂)되고 있으며, 가장 많이 퇴사(堆砂)된 곳은 70cm까지 퇴사(堆砂)되었음이 밝혀졌다. 또한 해를 거듭할수록 퇴사(堆砂)되는 율(率)이 적어지고 있으며, 퇴사(堆砂)의 입도분포(粒度分布)는 호수(湖水) 전체에 거의 $20{\mu}$이하(以下)의 미세입자(微細粒子)가 분포(分布)하고 있었다.

  • PDF

Prediction of Outflow Hydrograph caused by Landslide Dam Failure by Overtopping

  • Do, XuanKhanh;Kim, Minseok;Nguyen, H.P.T;Jung, Kwansue
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.196-196
    • /
    • 2016
  • Landslide dam failure presents as a severe natural disaster due to its adverse impact to people and property. If the landslide dams failed, the discharge of a huge volume of both water and sediment could result in a catastrophic flood in the downstream area. In most of previous studies, breaching process used to be considered as a constructed dam, rather than as a landslide dam. Their erosion rate was assumed to relate to discharge by a sediment transport equation. However, during surface erosion of landslide dam, the sediment transportation regime is greatly dependent on the slope surface and the sediment concentration in the flow. This study aims to accurately simulate the outflow hydrograph caused by landslide dam by overtopping through a 2D surface flow erosion/deposition model. The lateral erosion velocity in this model was presented as a function of the shear stress on the side wall. The simulated results were then compared and it was coherent with the results obtained from the experiments.

  • PDF