• Title/Summary/Keyword: sediment characterization

Search Result 55, Processing Time 0.024 seconds

Monitoring of Indicator Microorganism Concentrations of River Sediment and Surface Water in the Geum River Basin (금강 수계 내 하천퇴적물 및 지표수의 지표미생물 농도분포)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • Characterization of sediment quality is important for the proper management of surface water quality, yet sediment has not been monitored sufficiently. In this study, fecal indicator microorganism concentrations of sediments in the Geum River Basin were monitored. Sampling was carried out at one paddy field, one lakeshore and five monitoring stations in the lower reach of the Geum River Basin. Surface waters and sediments were sampled four times during rainy season. Total coliform concentrations of sediments were 12 times higher in average to those of surface waters while E. coli concentrations of sediments were six times higher. No correlation found between indicator microorganism concentration between surface waters and sediments.

Vertical distribution of suspended sediment concentration - A case study in Cu Lao Dung Coastal Areas (Vietnam)

  • Tien H. Le Nguyen;Phuoc H. Vo Luong
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.313-324
    • /
    • 2023
  • The vertical distribution of suspended sediments in the mangrove-mud coast is complicated due to the characterization of cohesive sediment properties, and the influence of hydrodynamic factors. In this study, the time-evolution of suspended sediment concentration (SSC) in water depth is simulated by a one-dimensional model. The model applies in-situ data measured in October 2014 at the outer station in Cu Lao Dung coastal areas, Soc Trang, Vietnam. In the model, parameters which have influence on vertical distribution of SSC include the settling velocity Ws and the diffusion coefficient Kz. The settling velocity depends on the cohesive sediment properties, and the diffusion coefficient depends on the wave-current dynamics. The settling velocity is determined by the settling column experiment in the laboratory, which is a constant of 1.8 × 10-4 ms-1. Two hydrodynamic conditions are simulated including a strong current condition and a strong wave condition. Both simulations show that the SSC near the bottom is much higher than ones at the surface due to higher turbulence at the bottom. At the bottom layer, the SSC is strongly influenced by the current.

Characterization of Organochlorine Insecticide Endosulfan-Degrading Bacterium Isolated from Seaside Sediment (갯벌에서 분리한 유기염소계 살충제 Endosulfan 분해 세균의 특성)

  • Park, Mi-Eun;Kim, Young-Mog;Chung, Yong-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.3
    • /
    • pp.207-215
    • /
    • 2011
  • An endosulfan degrading bacterial strain, K-1321, was isolated by endosulfan-enrichment culture from a seaside sediment collected at Dadaepo Beach, Busan, Korea. The strain was identified as a Serratia sp. based on the results of morphological, biochemical and 16S rDNA homology analyses. Serratia sp. K-1321 was able to completely degrade 50 ppm endosulfan in culture media and soil within 6 weeks at $25^{\circ}C$. GC/MS analysis revealed that endosulfan diol was an intermediate of the bacterial endosulfan degradation. Considering the above results, we concluded that Serratia sp. K-1321 utilized endosulfan as a carbon source and metabolized endosulfan via a less toxic pathway, such as the formation of endosulfan diol as an intermediate.

Monitoring and Analysis of Nutrients in Sediments in the Riverbed (하천 퇴적물의 영양염류 모니터링)

  • Kim, Geonha;Jung, Woohyeok;Lee, Junbae
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.838-845
    • /
    • 2006
  • Characterization of sediment in the riverbed is of importance for effective water quality management, yet have not been monitored sufficiently. This paper reports monitoring results of nutrient concentrations of sediments. Surface waters and sediments were sampled four times during rainy season at five monitoring points. Organics of overlying water were increased after high flow condition followed by decreasing tendencies. Soluble phosphorus fraction among total phosphorus was increased after high flow condition while total phosphorus was in decreasing tendencies. Monitoring result suggested that more extended monitoring scheme for flow rate, scouring velocity, and suspended material is required for analyzing relationship between water quality and sediment.

Behavior of sediment from the dam FERGOUG in road construction

  • Benaissa, Assia;Aloui, Zehour;Ghembaza, Moulay S.;Levacher, Daniel;Sebaibi, Yahia
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2016
  • In Algeria, wastes are often stored in such conditions that do not meet standards. Today and more than ever, we really must implement an environmentally management of wastes. Recovery of waste in Algeria has a considerable delay due to the absence of a policy favorable to the development of waste management. But many researchers have shown the possibility to reuse dredged sediments in road construction. Through Europe, recent research works have been already performed on dam sediments. Present study fits into the context of the valorization of dredged sediments from Fergoug dam. They are found in considerable quantities and mainly composed of mineral phases, organic matters and water. The reservoir sedimentation poses problems for the environment and water storage, dredging becomes necessary. Civil engineering is a common way of recycling for such materials. Dredged sediments have not the required mechanical characteristics recommended by the standards as GTR guide (LCPC-SETRA 1992). So as to obtain mechanical performance, dredged sediment can be treated with cement, lime, or replaced materials like quarry sand. An experimental study has been conducted to determine physical and mechanical characteristics of sediments dredged from dam. Then different mixtures of sediment and/or quarry sand with hydraulic binders are proposed for improving the grain size distribution of the mixes. Finally, according these mixtures, different formulations have been tested as alternative materials with dredged sediments.

Characterization of Water Pollution Load in an Artificial Lake Irregularly Receiving River Water (유지용수 공급형 인공저수지의 수질오염부하 특성 연구)

  • Cho, Woong-Hyun;Jeong, Byung-Gon;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The first objective of this study was to investigate water pollution status of Meejae Reservoir, Kunsan, irregularly receiving river water for agricultural and recreational purposes. The second objective of the study was to compare nutrient pollution loads of three nutrient sources: sediment leaching, non-point sources and the receiving water. Water analysis results showed that eutrophication was a concern especially in summer and the calculated TSI (secchi depth), TSI (chlorophyll-a), and TSI (TP) were 53.6, 57.7 and 56.7, respectively. Although there was no significant difference in seasonal mean values of sediment T-N, sediment T-P and sediment organic content, mean differences were found for sampling points. However, T-N and T-P sediment release flux showed seasonal mean differences, while showing no mean difference for sampling points. Water T-N data proportionally correlated with sediment T-N and sediment organic content data, while no statistical correlation was found for water T-P data. Comparison of nutrient loads calculated from three sources showed that the highest T-N load was occurred from the receiving (pumped) water while T-P loads of the receiving water and sediment release flux were similar. The first solution would be considered for the receiving water to improve the water quality of Meejae Reservoir. Reduction of nutrient flux from the sediment would be then tried as the second alternative solution.

Characterization of Chloroanilines-degrading Bacteria Isolated from Seaside Sediment (연안 갯벌에서 분리한 Chloroaniline 화합물 분해 미생물의 특징)

  • Kang, Min-Seung;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.5
    • /
    • pp.282-287
    • /
    • 2007
  • Chloroanilines are aromatic amines used as intermediate products in the synthesis of herbicides, azo-dyes, and pharmaceuticals. 3,4-dichloroaniline (DCA) is the degradation product of some herbicides (diuron, propanil, and linuron) and of trichlorocarbanilide, a chemical used as an active agent in the cosmetic industry. The compound, however, is considered a potential pollutant due to its toxicity and recalcitrant property to humans and other species. With the increasing necessity for bioremediation, we sought to isolate bacteria that degraded 3,4-DCA. A bacterium capable of growth on 3,4-DCA as the sole carbon source was isolated from seaside sediment using a dilution method with a culture enriched in 3,4-DCA. The isolated strain, YM-7 was identified to be Pseudomonas sp. The isolated strain was also able to degrade other chloroaniline compounds. The isolated strain showed a high level of catechol 2,3-dioxygenase activity on exposure to 3,4-DCA, suggesting that this enzyme is an important factor in 3,4-DCA degradation. The activity toward 4-methylcatechol was 53.1% that of catechol, while the activity toward 3-methylcatechol, 4-chlorocatechol and 4,5-chlorocatechol was 18.1, 33.1, and 6.9%, respectively.

Characterization of Water and Sediment Environment in Water Shield (Brasenia schreberi) Habitats (순채 생육지에서 수체와 저토의 환경요인 분석)

  • Kim, Yoon-Dong
    • The Korean Journal of Ecology
    • /
    • v.19 no.3
    • /
    • pp.209-216
    • /
    • 1996
  • In order to identify the habitat characteristics of water shield (Brasenia schreberi), water quality and sediment characters were investigated. Water shield had peculial habitats such as old reservoir, developed basin-like reservior, a water depth within 1.5 m, constant water level, and thick sediment layer at the bottom. The species had very dense populations under the favorable growing conditions and occasionally grew together with Utricularia japonica. When water shield decreased, Nelumbo nucifera, Nuphar japonicum and Zizania latifolia increased. Natural populations of water shield need protection because it is endangered by the human activities and their harvest. The optimal conditions for the growth of water shield was near neutral pH. low conductivity and low turbidity. Therefore the input of pollutants should be controlled for its growth. The inorganic ion contents such as K, Mg, and Na were higher in the water shield growing area. Especially iron content of the sediments in the reservoirs with water shield was nearly five times as high as that in the reservoirs without water shield. thus iron might be one of the major limiting factors for the growth. It was considered that molybdenum can be another major factor because water shield is a nitrogen fixing plant.

  • PDF

Development and Characterization of PCE-to-Ethene Dechlorinating Microcosms with Contaminated River Sediment

  • Lee, Jaejin;Lee, Tae Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.120-129
    • /
    • 2016
  • An industrial complex in Wonju, contaminated with trichloroethene (TCE), was one of the most problematic sites in Korea. Despite repeated remedial trials for decades, chlorinated ethenes remained as sources of down-gradient groundwater contamination. Recent efforts were being made to remove the contaminants of the area, but knowledge of the indigenous microbial communities and their dechlorination abilities were unknown. Thus, the objectives of the present study were (i) to evaluate the dechlorination abilities of indigenous microbes at the contaminated site, (ii) to characterize which microbes and reductive dehalogenase genes were responsible for the dechlorination reactions, and (iii) to develop a PCE-to-ethene dechlorinating microbial consortium. An enrichment culture that dechlorinates PCE to ethene was obtained from Wonju stream, nearby a trichloroethene (TCE)-contaminated industrial complex. The community profiling revealed that known organohalide-respiring microbes, such as Geobacter, Desulfuromonas, and Dehalococcoides grew during the incubation with chlorinated ethenes. Although Chloroflexi populations (i.e., Longilinea and Bellilinea) were the most enriched in the sediment microcosms, those were not found in the transfer cultures. Based upon the results from pyrosequencing of 16S rRNA gene amplicons and qPCR using TaqMan chemistry, close relatives of Dehalococcoides mccartyi strains FL2 and GT seemed to be dominant and responsible for the complete detoxification of chlorinated ethenes in the transfer cultures. This study also demonstrated that the contaminated site harbors indigenous microbes that can convert PCE to ethene, and the developed consortium can be an important resource for future bioremediation efforts.

A report of 35 unrecorded bacterial species isolated from sediment in Korea

  • Han, Ji-Hye;Baek, Kiwoon;Hwang, Seoni;Nam, Yoon Jong;Lee, Mi-Hwa
    • Journal of Species Research
    • /
    • v.9 no.4
    • /
    • pp.362-374
    • /
    • 2020
  • A total of 35 bacterial strains were isolated from various sediment samples. From 16S rRNA gene sequence similarities higher than 98.7% and the formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to independent and predefined bacterial species. No previous official reports have described these 35 species in Korea. The unrecorded species were assigned to 6 phyla, 10 classes, 18 orders, 23 families, and 31 genera. At the genus level, the unrecorded species were affiliated with Terriglobus of the phylum Acidobacteria, as well as with Mycobacterium, Rhodococcus, Kineococcus, Phycicoccus, Agromyces, Cryobacterium, Microbacterium, and Arthrobacter; Catellatospora of the class Actinomycetia; Lacibacter of the class Chitinophagia; Algoriphagus and Flectobacillus of the class Cytophagia; Flavobacterium and Maribacter of the class Flavobacteriia; Bacillus, Cohnella, Fontibacillus, Paenibacillus, Lysynibacillus, and Paenisporosarcina of the class Bacilli; Bradyrhizobium, Gemmobacter, Loktanella, and Altererythrobacter of the class Alphaproteobacteria; Acidovorax of the class Betaproteobacteria; Aliiglaciecola, Cellvibrio, Arenimonas, and Lysobacter of class Gammaproteobacteria; and Roseimicrobium of the class Verrucomicrobia. The selected strains were subjected to further taxonomic characterization, including Gram reaction, cellular and colonial morphology, and biochemical properties. This paper provides detailed descriptions of the 35 previously unrecorded bacterial species.