• Title/Summary/Keyword: sediment characteristics

Search Result 1,037, Processing Time 0.027 seconds

Estimation of Sediment Transport and Influence Factor for the Prediction of Riverbed Changes (하천유역의 유사량 산정 및 하상변동 예측을 위한 영향인자의 평가분석)

  • Yun, Se-Ui;Lee, Jong-Tae;Jeong, Jae-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.561-570
    • /
    • 1997
  • The feature of this paper is (1) to analyze the characteristics of rainfall-runoff relationship with kinematic wave theory, (2) to study the computational model to estimate the sediment yield, (3) to analyze the effects of bed change by transport formulas and the number of watershed division, and (4) to verify the model application with observation of channel data and measurement of rainfall, runoff, sediment discharge in Pyung-Chang River Basin. The calculated time of concentration of peak discharge occured little earlier than the actual, but the tendency of hydrograph coincided with observation. The shape of sediment hydrographs was similar to the water hydrograph. Based on above results, the applicability of the model was verified in detail. As the number of watershed division increased, the difference between the measured runoff and sediment values and the estimated ones decreased. The result of calculation with Yalin's formula for surface and Acker-White's one for channel gave the best agreement with the measured data among the six selected sediment transport foumulas.

  • PDF

Distribution of Vital, Environmental Components and Nutrients Migration Over Sedimentary Water Layers

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.195-206
    • /
    • 2021
  • Contaminated marine sediment is a secondary pollution source in the coastal areas, which can result in increased nutrients concentrations in the overlying water. We analyzed the nutrients release characteristics into overlying water from sediments and the interaction among benthic circulation of nitrogen, phosphorus, iron, and sulfur were investigated in a preset sediment/water column. Profiles of pH, ORP, sulfur, iron, nitrogen, phosphorus pools were determined in the sediment and three different layers of overlying water. Variety types of sulfur in the sediments plays a significant role on nutrients transfer into overlying water. Dissimilatory nitrate reduction and various sulfur species interaction are predominantly embodied by the enhancing effects of sulfide on nitrogen reduction. Contaminant sediment take on high organic matter, which is decomposed by bacteria, as a result promote bacterial sulfate reduction and generate sulfide in the sediment. The sulfur and iron interactions had also influence on phosphorus cycling and released from sediment into overlying water may ensue over the dissolution of ferric iron intercede by iron-reducing bacteria. The nutrients release rate was calculated followed by release rate equation. The results showed that the sediments released large-scale quantity of ammonium nitrogen and phosphate, which are main inner source of overlying water pollution. A mechanical migration of key nutrients such as ammonia and inorganic phosphate was depicted numerically with Fick's diffusion law, which showed a fair agreement to most of the experimental data.

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

The Pollution Characteristics of Heavy Metals from Surface Sediment in Nakdong River (낙동강 하상퇴적물의 중금속 오염특성)

  • 김은호;김형석;김석택
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.52-58
    • /
    • 2000
  • This study was carried out to investigate the contents of heavy metals with respect to the depth, particle size and Tessier et al. method in surface sediment of the Nakdong river. The contents of Cd, Cu & Pb were high or similar with increasing depth, but Mn & Zn were high to middle depth. Generally, the contents of heavy metals were found to be high as the particle size become more small and more deep. Because the more particle size was small, the specific surface area was large, the contents of heavy metals was high for increasing affinity. It was estimated that the types of heavy metals contained in surface sediment by Tessier et al. method was dissimilar with anaerobic condition, pH and degradation of organic matter, etc.

  • PDF

Classifying Seafloor Sediments Using a Probabilistic Neural Network (확률 신경망에 의한 해저 저질의 식별)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.3
    • /
    • pp.321-327
    • /
    • 2018
  • To classify seafloor sediments using a probabilistic neural network (PNN), the frequency-dependent characteristics of broadband acoustic scattering, which make it possible to qualitatively categorize seabed type, were collected from three different geographical areas in Korea. The echo data samples from three types of seafloor sediment were measured using a chirp sonar system operating over a frequency range of 20-220 kHz. The spectrum amplitudes for frequency responses of 35-75 kHz were fed into the PNN as input feature parameters. The PNN algorithm could successfully identify three seabed types: mud, mud/shell and concrete sediments. The percentage probabilities of the three seabed types being correctly classified were 86% for mud, 66% for mud/shell and 72% for concrete sediment.

Soil Erosion Modeling Using RUSLE and GIS on the Imha Watershed (RUSLE 모형을 이용한 임하댐 유역에서의 토양유실량 평가)

  • Kim, Hyeon-Sik;Julien, Pierre. Y.;Yum, Kyung-Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.126-131
    • /
    • 2007
  • The Imha watershed is vulnerable to severe erosion due to the topographical characteristics such as mountainous steep slopes. The RUSLE model was combined with GIS techniques to analyze the mean annual erosion losses and the soil losses caused by typhoon "Maemi". The model is used to evaluate the spatial distribution of soil loss rates under different land uses. The mean annual soil loss rate and soil losses caused by typhoon "Maemi"were predicted as $3,450\;tons/km^2/year$ and $2,920\;ton/km^2/"Maemi"$, respectively. The sediment delivery ratio was determined to be about 25% from the mean annual soil loss rate and the surveyed sediment deposits in the Imha reservoir in 1997.

  • PDF

Characteristics of Meiobenthic Community Inhabiting Sandy Sediment in the Yellow Sea, Korea (서해 장봉도 인근 사질 퇴적물에서 서식하는 중형저서동물 군집 특성)

  • Kang, Tea-Wook;Kim, Dong-Sung;Min, Won-Gi;Rho, Hyun-Soo;Hong, Jae-Sang
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.193-209
    • /
    • 2011
  • The community structure of meiobenthos was studied at 16 stations within sandy tidal and subtidal zones in Jangbongdo in the Yellow Sea, Korea from Aug. 2006 to Jan. 2007. Meiobenthic organisms were collected by three core samples, with a 3.6 cm diameter, from each sediment sample taken with a Smith-McIntyre Grab. Mean grain size of study stations ranged from $1.49{\phi}$ to $3.55{\phi}$. Composition of sand ranged from 80.38% to 99.89%. There was reduction in total abundance and biomass of meiobenthos from summer to winter. Total densities of meiofauna ranged between 17 inds./10 $cm^2$ and 853 inds./10 $cm^2$. Nematodes, gastrotricha, nauplius and harpacticoids appeared as major taxa in decreasing order. This study shows that major taxa comprised 90 percent of total abundance. Most meiofaunal organisms are concentrated in the upper sediment layers and the total abundance and biomass of organisms in the tidal zone is higher than the subtidal zone.

Inference Models for Tidal Flat Elevation and Sediment Grain Size: A Preliminary Approach on Tidal Flat Macrobenthic Community

  • Yoo, Jae-Won;Hwang, In-Seo;Hong, Jae-Sang
    • Ocean Science Journal
    • /
    • v.42 no.2
    • /
    • pp.69-79
    • /
    • 2007
  • A vertical transect with 4 km length was established for the macrofaunal survey on the Chokchon macrotidal flat in Kyeonggi Bay, Incheon, Korea, 1994. Tidal elevation (m) and sediment mean grain size $(\phi)$ were inversely predicted by the transfer functions from the faunal assemblages. Three methods: weighted average using optimum value (WA), tolerance weighted version of the weighted average (WAT) and maximum likelihood calibration (MLC) were employed. Estimates of tidal elevation and mean grain size obtained by using the three different methods showed positively corresponding trends with the observations. The estimates of MLC were found to have the minimum value of sum of squares due to errors (SSE). When applied to the previous data $(1990\sim1992)$, each of three inference models exhibited high predictive power. This result implied there are visible relationships between species composition and faunas' critical environmental factors. Although a potential significance of the two major abiotic factors was re-affirmed, a weak tendency of biological interaction was detected from faunal distribution patterns across the flat. In comparison to the spatial and temporal patterns of the estimates, it was suggested that sediment characteristics were the primary factors regulating the distribution of macrofaunal assemblages, rather than tidal elevation, and the species composition may be sensitively determined by minute changes in substratum properties on a tidal flat.

Numerical Analysis for the Geological Engineering Characteristics of Unconsolidated Sediment (미고결 퇴적물의 지질공학적 특성에 대한 수치해석적 연구)

  • CHO Tae-Chin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.215-224
    • /
    • 1990
  • Finite element model capable of solving coupled deformation-fluid diffusion equations for the fully saturated porous medium was developed using Galerkin's residual method. This model was used to study the mechanical and hydraulic behaviors of unconsolidated sediment near South Harbor, Pusan. The vertical displacement of top surface clay sediment, when subjected to the external load, is significantly affected by the excessive pore pres- sure buildup and its decay due to the pore fluid diffusion. The sand deposit overlain by the much less permeable clay layer serves as a flow channel. Consequently, the fluid diffusion due to pore pressure difference is significantly facilitated, which also affects the diffusion-dependent sediment deformation.

  • PDF

Effect of the Freshwater Discharge on Seawater and Sediment Environment in a Coastal Area in Goheung County, South Korea

  • Nguyen, Hoang Lam;Jang, Min-Seok;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.270-276
    • /
    • 2014
  • Seasonal characteristics of water and sediment qualities and potential effects of the freshwater discharge from a small tide embankment interior in a coastal area in Goheung county were investigated from May to September in 2012. Chemical oxygen demand values (COD) were mostly higher than 2 mg/L in summer ebb tide, which exceed the standard value of water quality criteria II of acceptable level for aquaculture activities. Nitrogen and phosphorus were found as the limiting nutrients for algae growth in summer and fall and in spring, respectively. Nitrogen was the limiting nutrient for diatom growth in the whole studied period. The sudden high values of COD, ammonia, dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP) were found in water sample collected from station 5 which located in front of the tide embankment sluice gate during spring ebb tide. The freshwater discharge form the tide embankment interior maybe affected the survey areas during a short time interval. Mean values of eutrophication index of the surveyed coastal region in spring, summer and fall were all bigger than 1. Water quality was mostly considered at level II which acceptable for aquaculture activities. Sediment quality in this study was generally in the range of standard for fisheries environment.