• Title/Summary/Keyword: secure image retrieval

Search Result 3, Processing Time 0.016 seconds

EEIRI: Efficient Encrypted Image Retrieval in IoT-Cloud

  • Abduljabbar, Zaid Ameen;Ibrahim, Ayad;Hussain, Mohammed Abdulridha;Hussien, Zaid Alaa;Al Sibahee, Mustafa A.;Lu, Songfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5692-5716
    • /
    • 2019
  • One of the best means to safeguard the confidentiality, security, and privacy of an image within the IoT-Cloud is through encryption. However, looking through encrypted data is a difficult process. Several techniques for searching encrypted data have been devised, but certain security solutions may not be used in IoT-Cloud because such solutions are not lightweight. We propose a lightweight scheme that can perform a content-based search of encrypted images, namely EEIRI. In this scheme, the images are represented using local features. We develop and validate a secure scheme for measuring the Euclidean distance between two descriptor sets. To improve the search efficiency, we employ the k-means clustering technique to construct a searchable tree-based index. Our index construction process ensures the privacy of the stored data and search requests. When compared with more familiar techniques of searching images over plaintexts, EEIRI is considered to be more efficient, demonstrating a higher search cost of 7% and a decrease in search accuracy of 1.7%. Numerous empirical investigations are carried out in relation to real image collections so as to evidence our work.

A Multi-Stage Approach to Secure Digital Image Search over Public Cloud using Speeded-Up Robust Features (SURF) Algorithm

  • AL-Omari, Ahmad H.;Otair, Mohammed A.;Alzwahreh, Bayan N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.65-74
    • /
    • 2021
  • Digital image processing and retrieving have increasingly become very popular on the Internet and getting more attention from various multimedia fields. That results in additional privacy requirements placed on efficient image matching techniques in various applications. Hence, several searching methods have been developed when confidential images are used in image matching between pairs of security agencies, most of these search methods either limited by its cost or precision. This study proposes a secure and efficient method that preserves image privacy and confidentially between two communicating parties. To retrieve an image, feature vector is extracted from the given query image, and then the similarities with the stored database images features vector are calculated to retrieve the matched images based on an indexing scheme and matching strategy. We used a secure content-based image retrieval features detector algorithm called Speeded-Up Robust Features (SURF) algorithm over public cloud to extract the features and the Honey Encryption algorithm. The purpose of using the encrypted images database is to provide an accurate searching through encrypted documents without needing decryption. Progress in this area helps protect the privacy of sensitive data stored on the cloud. The experimental results (conducted on a well-known image-set) show that the performance of the proposed methodology achieved a noticeable enhancement level in terms of precision, recall, F-Measure, and execution time.

Reversible Sub-Feature Retrieval: Toward Robust Coverless Image Steganography for Geometric Attacks Resistance

  • Liu, Qiang;Xiang, Xuyu;Qin, Jiaohua;Tan, Yun;Zhang, Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1078-1099
    • /
    • 2021
  • Traditional image steganography hides secret information by embedding, which inevitably leaves modification traces and is easy to be detected by steganography analysis tools. Since coverless steganography can effectively resist steganalysis, it has become a hotspot in information hiding research recently. Most coverless image steganography (CIS) methods are based on mapping rules, which not only exposes the vulnerability to geometric attacks, but also are less secure due to the revelation of mapping rules. To address the above issues, we introduced camouflage images for steganography instead of directly sending stego-image, which further improves the security performance and information hiding ability of steganography scheme. In particular, based on the different sub-features of stego-image and potential camouflage images, we try to find a larger similarity between them so as to achieve the reversible steganography. Specifically, based on the existing CIS mapping algorithm, we first can establish the correlation between stego-image and secret information and then transmit the camouflage images, which are obtained by reversible sub-feature retrieval algorithm. The received camouflage image can be used to reverse retrieve the stego-image in a public image database. Finally, we can use the same mapping rules to restore secret information. Extensive experimental results demonstrate the better robustness and security of the proposed approach in comparison to state-of-art CIS methods, especially in the robustness of geometric attacks.