• Title/Summary/Keyword: sectional die

Search Result 60, Processing Time 0.022 seconds

Prediction of Air Pocket Pressure in Draw Die during Stamping Process (드로우 금형의 에어포켓 수축에 따르는 내부공기 압력예측에 대한 연구)

  • Koo, Tae-Kyong;Hwang, Se-Joon;Park, Warn-Gyu;Oh, Se-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.10-18
    • /
    • 2008
  • Metal stamping is widely used in the mass-production process of the automobile industry. During the stamping process, air may be trapped between the draw die and the panel. The high pressure of trapped air induces imperfections on the panel surface and creates a situation where an extremely high tonnage of punch is required. To prevent these problems, many air ventilation holes are drilled through the draw die and the punch. The present work has developed a simplified mathematical formulation for computing the pressure of the air pocket based on the ideal gas law and isentropic relation. The pressure of the air pocket was compared to the results by the commercial CFD code, Fluent, and experiments. The present work also used the Bisection method to calculate the optimum cross-sectional area of the air ventilation holes, which did not make the pressure of the air pocket exceed the prescribed maximum value.

Mechanical Effects of Pipe Drawing Angle and Reduction Rate on Material (파이프 인발 각도에 따른 기계적 효과 및 재료에 따른 감소율에 관한 연구)

  • Seo, Youngjin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.8-13
    • /
    • 2020
  • Seamless pipes are fabricated by drilling a hole in a cylindrical material and drawing the material to the desired diameter. These pipes are used in environments where high reliability is required. In this study, the pipe drawing process was simulated using DEFORM, a commercial finite element method (FEM) analysis program. The outer diameter of the steel cylinder used herein before drawing was 70 mm, and the target outer diameter was 58 mm. The drawing process consisted of two stages. In this study, the effect of cross-sectional reduction rate on the pipe was investigated by varying the cross-sectional reduction rate in each step to achieve the target outer diameter. The results of this study showed that the first section reduction rate of 26% and the second section reduction rate of 13.9% caused the lowest damage to the material. Moreover, the FEM simulation results confirmed the influence of the drawing die angle on the pipe drawing process. The drawing die angles of 15° in the first step and 9° in the second step caused the least damage to the material.

유한요소법을 이용한 전방압출공정의 내부결함에 관한 연구

  • 김태형;김병민;강범수;최재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.79-83
    • /
    • 1992
  • According to the variation of hydrostatic pressure on the central axis of deformable material, the V-shaped central bursting defect may be created on extrusion or drawing processes. The process factors whichaffect the generation of defects are die semi-angle, reduction ratio of cross-sectional area, friction factor, material properties and so on. The combination of these factors can determine the prossibility of defect creation and the shape of various round holes which have been created inside already. By the rigid plastic finite element method, this paper describes the observations of change in shape of a round hole with process conditions suchas die semi-angle, reduction ratio of cross-sectional area and friction factorat the unsteady state of axi-symmetrical extrusion process when the round hole is alreadyexisted inside the original billet, and also, the effects of process factors are investigated to prevent the possible defects.

Development of Semiconductor Packaging Technology using Dicing Die Attach Film

  • Keunhoi, Kim;Kyoung Min, Kim;Tae Hyun, Kim;Yeeun, Na
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.361-365
    • /
    • 2022
  • Advanced packaging demands are driven by the need for dense integration systems. Consequently, stacked packaging technology has been proposed instead of reducing the ultra-fine patterns to secure economic feasibility. This study proposed an effective packaging process technology for semiconductor devices using a 9-inch dicing die attach film (DDAF), wherein the die attach and dicing films were combined. The process involved three steps: tape lamination, dicing, and bonding. Following the grinding of a silicon wafer, the tape lamination process was conducted, and the DDAF was arranged. Subsequently, a silicon wafer attached to the DDAF was separated into dies employing a blade dicing process with a two-step cut. Thereafter, one separated die was bonded with the other die as a substrate at 130 ℃ for 2 s under a pressure of 2 kgf and the chip was hardened at 120 ℃ for 30 min under a pressure of 10 kPa to remove air bubbles within the DAF. Finally, a curing process was conducted at 175 ℃ for 2 h at atmospheric pressure. Upon completing the manufacturing processes, external inspections, cross-sectional analyses, and thermal stability evaluations were conducted to confirm the optimality of the proposed technology for application of the DDAF. In particular, the shear strength test was evaluated to obtain an average of 9,905 Pa from 17 samples. Consequently, a 3D integration packaging process using DDAF is expected to be utilized as an advanced packaging technology with high reliability.

Flow Analysis of the Air Pocket in Draw Die (드로우 금형의 에어포켓 유출 유동해석)

  • Hwang, Se-Joon;Park, Warn-Gyu;Kim, Chul;Oh, Se-Wook;Cho, Nam-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.345-348
    • /
    • 2006
  • In sheet metal forming process using press and draw die some defect can be made because of the high pressure of air pocket between draw die and the product. The purpose of this study is to develop a program to decide an optimal combination of air vent hole size and number to prevent those defect on product. The air inside air pocket is considered as ideal gas and the compression and expansion is assumed as isentropic process. The mass flow is computed in two flow condition: unchocked and chocked condition. The present computation obtains required cross-sectional area of air vent hole for not exceeding the user specified pressure such as the pressure for yielding strength of the product or the pressure for unchocked flow. To validate the program the present results are compared with the results of other researchers and commercial CFD code.

  • PDF

Manufacture of Press Die Pattern Using Laser System (레이저 가공 시스템을 이용한 프레스 금형용 패턴 제작)

  • 최명수;강경호;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.816-819
    • /
    • 2000
  • Recently the styrofoam has been used fur material of press die pattern. The object of this research is to develope an automated laser system for manufacture of press die pattern which depends chiefly on handwork during its process. After converting 3-D CAD model into cross-sectional shape information, the unnecessary part of the section is vapored away by laser. The depth and width of cut are mainly under the control of laser power and beam feed rate. The optimum manufacturing conditions are obtained by preliminary experiments. It is necessary fur precise styrofoam pattern manufacturing to develope laser system which has sufficient motion accuracy and program or beam path generation and automatic control of this system.

  • PDF

Characteristics of Bending Deformation in Aluminum Rectangular Bar by Press Die (알루미늄 각재의 프레스 굽힘 변형 특성)

  • Kim, K.S.;Hur, K.D.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • In the recent years, the production of light-weight products has become important because of increasing demands for the energy savings through weight reduction. Therefore the advanced manufacturing technology with Al alloy is continuously required in many industrial fields. Bending characteristics of Al rectangular tube with hollow and solid section has been analyzed by FE analysis in press bending with wing-die. Bending stress is affected by punch stroke and rotation of wing-die. There were different sectional sagging characteristics between the solid rectangle section and the hollow rectangle section.

Three-Dimensional Rigid-Plastic Finite Element Analysis of Nonsteady State Shaped Drawing Process (비정상상태 이형재 인발공정의 3차원 강소성 유한요소해석)

  • Kim, Ho-Chang;Choi, Young;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.119-128
    • /
    • 1998
  • In this paper, nonsteady state shaped drawing process has been investigated using the three-dimensional rigid-plastic finite element method. In order to analyze the shaped drawing process, a method to define straight converging die considering straight die part, die radius part and bearing part has been proposed. In addition, the modeling of initial billet and the generation procedure of mesh system have been suggested. The three-dimensional rigid-plastic finite element simulation has been performed for a square sectional drawing process and its result has been confirmed in comparison with the existing experimental one. Also, for the same process conditions, the effect of perimeter ratio in the shaped drawing process has been investigated.

  • PDF

Split Die Design for ECAP with Lower Loads (등통로각압축 공정용 저하중 분리형 금형 설계)

  • Jin, Young-Gwan;Kang, Seong-Hoon;Son, Il-Heon;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.217-222
    • /
    • 2008
  • Equal channel angular pressing (ECAP) is one of the effective methods to produce bulk-nano materials by accumulating plastic strain into the workpiece without changing its cross-sectional shape in the multi-pass processing. However, the forming load becomes higher for manufacturing large specimens using conventional solid or split dies because of friction, flash formation, and usage of dummy specimen. In the present investigation, better split die was designed to reduce the forming loads and improve the geometrical accuracy of the specimen in the multi-pass ECAP. The new die exit channel was also designed to reduce the friction effect. Experiments with AA1050 specimens with a square cross-section were carried out to examine the design goal using the proposed split dies for routes A and C up to four passes. The numerical forming simulations were used to determine the effective geometry of various die models in the present work.

A Simplified Three-Dimensional Finite Element Analysis of the Non-axisymmetric Extrusion Process (비축대칭 압출 공정의 근사 3차원 유한 요소 해석)

  • Shin, H.W.;Kim, D.W.;Kim, N.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.52-65
    • /
    • 1992
  • In this study a new simplified three-dimensional numerical method and the associated computer program have been developed to simulate the non-axisymmetric extrusion processes. The two-dimensional rigid-plastic finite element method under the generalized plane-strain condition is combined with the slab method. To define the die geometry for a non-axisymmetric extrusion. area mapping technique was used. Streamlined die surface was used to minimize the total extrusion pressure. Extrusion of square, hexagonal and 'T' section from round billet have been simulated and experimented with a model material. The computed results were in good agreement with the experiments in cross-sectional grid distortion. Computational results will be valuable for designing tool geometries and corresponding processes.

  • PDF