• Title/Summary/Keyword: section of housing

Search Result 111, Processing Time 0.024 seconds

Changes in De Facto Population around Gyungui Line Forest Park based on Surrounding Land Uses under COVID-19 (코로나19에 따른 경의선 숲길 주변 토지이용 별 생활인구 변화)

  • An, Jooyeon;Kim, Hyungkyoo
    • Land and Housing Review
    • /
    • v.13 no.4
    • /
    • pp.73-89
    • /
    • 2022
  • With the spread of COVID-19, the role of parks has been emphasized. Under the quarantine guidelines, including social distancing, people are visiting parks as a safe place. In line with these changes, parks need to be studied as pandemic adaptation measures according to their physical and location characteristics. This study aims to explore the potential of linear parks with accessibility and pass way functions based on the characteristics of surrounding land uses. The case study area was selected from Yeonnam-dong to Yeomni-dong of the Gyeongui Line Forest Park, and the area was divided into 4 sections based on the administrative boundary and surrounding land uses. Multiple regression models were adopted in each section using the total number of de facto population as a dependent variable and factors affecting external activities including COVID-19 as independent variables. The results show that first, the more diverse the interaction between commercial facilities and linear parks, the greater the impact of the pandemic. Second, where various commercial facilities are concentrated people respond more sensitively to short-term weather changes than seasonal ones. This study indicates that there are differences in the use of linear parks according to the surrounding land uses. In addition, it suggests that the linear park has potential as a means to overcome the Pandemic crisis of the city and to increase equity in access to green areas.

A Study for Improved Design Criteria of Composite Pile Joint Location based on Case Analysis (사례 분석을 통한 복합말뚝 이음위치의 설계 기준식 개선 연구)

  • Hwang, Uiseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Composite pile, which is composed of the steel pipe pile in which the large horizontal force acts and the PHC pile in which the small horizontal force acts by a special connecting devices, is being commercialized as a base material for civil engineering structures. The core of such a composite pile can be said to be a design criterion for estimating the joint position and stability of the connection device between steel pipe pile and PHC pile. In Korea, there is no precise specification for the location of composite pile joints. In the LH Design Department (Korea Land & Housing Corporation, 2009), "Application of composite pile design and review of design book marking" was made with reference to Road Design Practice Volume 3 (Korea Expressway Corporation, 2001). this is used as a basis of the design of the composite pile. It can not be regarded as a section change of the composite pile, so it has a limitation in application. Therefore, In this study, we propose a design criterion for the location of the section of the composite pile (joint of steel pipe pile and PHC pile) and evaluate the stability and economical efficiency of it by using experimental method and analytical method. Analysis of composite pile design data installed in 79 domestic bridges abutment showed that the stresses, bending moments, and displacements acting on the pile body and connection of the pile were analyzed. Through the redesign process, it was confirmed that the stresses generated in the connecting device occur within the allowable stress values of the connecting device and the PHC pile. In conclusion, the design proposal of composite pile joint location through empirical case study in this study is an improved design method considering both stability and economical efficiency in designing composite pile.

A study on the Bending Property of Structural Size Skin-Timber (대단면 스킨팀버의 휨 성질에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Recently, the demand and supply on the Hanok have been increased. However, Hanok should be requested larger section of structural members because of excessive roof weight. So, structural skin-timber was manufactured to get a lightweight structural member. The structural skin-timber has exterior shape with larger section but a great volume of wood be removed. The reduced strength of structural skin-timber can be supplemented by hybridizaion of structural member. Japanese larch and Domestic pine were used to manufacture the structural skin-timber. Structural skin-timbers of rectangular shape and cylinder shape were manufactured and tested to evaluate the bending properties. The intended strength property could not be obtained because member had been suffered severe damage by precision deficiency of manufacturing machine. However, if precision of manufacturing machine would be improved and additional hybridizaion of structural skin-timber would be done, lightweight structural member will be able to be manufactured. Structural skin-timber did not showed statistical significancy between two species, so it is possible to use pine mixed with larch. Only MOR of larch showed statistical significancy between rectangular shape and cylinder shape, so it is necessary to use of those as separate things. However, the rest of skin-timber can be judged mixed using because of non statistical significancy. The objective of this study was the development of lightweight larger structural member with relatively strength. If hybrid member of skin-timber could be developed with wood-ceramics, lightweight steel and more, it can be possible to be used as a building material of Hanok, interior material, post & beam construction material and more.

Seismic exploration for understanding the subsurface condition of the Ilwall-dong housing construction site in Pohang-city, Kyongbook (경북 포항시 일월동 택지개발지구의 지반상태 파악을 위한 탄성파탐사)

  • Seo, Man Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 1999
  • Seismic refracrion and reflection surveys were conducted along an E-W trending track of 482 m long in Ilwall-dong, Pohang. End-on spread was employed as source-receiver configuration with 2 m for both geophone interval and offset. Seismic data were acquired using 24 channels at every shot fired every 2 m along the track. Refraction data were interpreted using equations for multi-horizontal layers. Reflection data were processed in the sequence of trace edit, gain control, CMP sorting, NMO correction, mute, common offset gathering, and filtering to produce a single fold seismic section. There are two layers in shallow subsurface of the study area. Upper layer has the P-wave velocities ranging from 267 to 566 m/s and is interpreted as a layer of unconsolidated sediments. Lower layer has P-wave velocities of 1096-3108 m/s and is interpreted as weathered rock to hard rock. Most of the lower layer classified as soft rock. Upper layer has lateral variations in both P-wave velocity and thickness. The upper layer in the eastern part of the seismic line is 3-5 m thick and has P-wave velocity of 400 m/s in average. The upper layer in the western part is 8-10 m thick and has P-wave velocity of 340 m/s in average. The eastern part is interpreted as unconsolidated beach sand, while the western part is interpreted as infilled soil to develop a construction site. Three fault systems of high angle are imaged in seismic reflection section. It is interpreted that the area between these fault systems are relatively safe. Large buildings should be located in the safe ground condition of no fault and footings should be designed to be in the basement rock of 3-10 m deep below the surface.

  • PDF

GIS-based Study on Residential and Neighboring Environment and Residents' Social Exclusion in Slum Area (쪽방밀집지역의 주거환경과 주민들의 사회적 배제에 대한 GIS 활용 연구)

  • Kim, Dong-Seon
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.8
    • /
    • pp.209-225
    • /
    • 2017
  • This study examines the effect of residential and neighboring environment on the residents' social exclusion in Daejeon Chokbangchon, the city's slum area. Based on GIS methodology with residents' addresses and other characteristics, this study finds out the feminization and the ageing trends in the central part of this area. Besides, longitudinal data between 2007 to 2016 shows this area's depopulation resulting in people's spread into other parts of the city. This study took pictures of 252 images of in the streets and indoors, analysed them and defined the problems of residential and neighboring environment. According to this picture analysis, the predicaments of this area was categorized into 4 types such as appearance-hygiene, narrowness-lack of residential functions, safety-privacy violation and stigma. This area ranging 1 km from north to south adjacent with Daejeon railway station was divided into 4 sections with different main problems. The follow-up survey for residents living in each section showed each section was different in work state, neighbor satisfaction, stigma and social exclusion. Finally, residential satisfaction was found to be the most important affecting factor on social exclusion. Based on these results, this study suggests government's housing policy on this area to be more enthusiastic and specific to cope with each problems of sections.

Variations of Building Methods and Costs of Modernized Hanok Test-bed Projects (실증구축을 통한 신한옥의 신공법 및 공사비 변화 요인 도출)

  • Seo, Nuri;Kang, Seunghee;Lee, Yunsub;Jin, Zhenhui;Jeong, Yeheun;Jung, Youngsoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.3
    • /
    • pp.86-96
    • /
    • 2019
  • The research efforts to modernize Hanok (Korean traditional housing) have been performed to improve the quality and cost-effectiveness through application of modern building methods and materials, and to disseminate it in various forms of sizes and facilities. In this study, in order to identify the variations of modernized Hanok, data from seven test-bed projects are analyzed based on the building work-section, element, method, and material. The data were standardized and managed through the modernized Hanok classification system (Hanclass) to facilitate systematic comparisons of the test-bed projects by the variation of building method and it's cost impact. Identified factors of the variation in terms of building methods were then itemized and quantified in terms of building cost. Findings of this study indicate that the timber structure is the most critical area for future variation for improving the quality and cost-effectiveness. The results of this study will be also used to systemize the Hanok database for further studies.

Developing girder distribution factors in bridge analysis through B-WIM measurements: An empirical study

  • Widi Nugraha;Winarputro Adi Riyono;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.207-220
    • /
    • 2023
  • The safety of bridges are critical in our transportation infrastructure. Bridge design and analysis require complex structural analysis procedures to ensure their safety and stability. One common method is to calculate the maximum moment in the girders to determine the appropriate bridge section. Girder distribution factors (GDFs) provide a simpler approach for performing this analysis. A GDF is a ratio between the response of a single girder and the total response of all girders in the bridge. This paper explores the significance of GDFs in bridge analysis and design, including their importance in the evaluation of existing bridges. We utilized Bridge Weigh-in-motion (B-WIM) measurements of five simple supported girder bridge in Indonesia to develop a simple GDF provisions for the Indonesia's bridge design code. The B-WIM measurements enable us to know each girder strain as a response due to vehicle loading as the vehicle passes the bridge. The calculated GDF obtained from the B-WIM measurements were compared with the code-specified GDF and the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge design specification. Our study found that the code specified GDF was adequate or conservative compared to the GDF obtained from the B-WIM measurements. The proposed GDF equation correlates well with the AASHTO LRFD bridge design specification. Developing appropriate provisions for GDFs in Indonesian bridge design codes can provides a practical solution for designing girder bridges in Indonesia, ensuring safety while allowing for easier calculations and assessments based on B-WIM measurements.

Prediction of Temperature Distribution to Evaluate Axial Strength of Unprotected Concrete-filled Steel Tubular Columns under Fire (화재 시 무피복 CFT 기둥의 축강도 평가를 위한 단면온도분포 예측기법의 개발)

  • Koo, Cheol Hoe;Lee, Cheol Ho;Ahn, Jae Kwon
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.587-599
    • /
    • 2013
  • A simple but accurate analytical method to evaluate the fire resistance of unprotected concrete filled tubular (CFT) columns under standard fire condition is proposed based on the fire design framework of EC4. To this end, the accuracy of the current tabulation method for the temperature prediction proposed by Lawson et al. was first critically evaluated, and a new prediction equation for the temperature gradient across the CFT section was then proposed based on available test and finite element analysis results. Overall, the axial strength predicted by using the proposed equation under the general fire design framework of EC4 was more accurate than that based on existing methods and appeared reasonable for design purposes. The results of this study are directly usable for the more rational fire analysis and design of unprotected CFT columns.

A Study on Standard Hanok Design for Rural (농촌 한옥 표준설계도 연구)

  • Kim, Jae-Ung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.1
    • /
    • pp.19-28
    • /
    • 2016
  • This research aimed to suggest a standard design that reflects Hanok design tendency, and present a selective design that can fulfill a building owner's intention beyond the simple function of building permit or report. In addition, this research attempted to become a standard by establishing a criterion in calculating the measurements of section design or primary framework members, in order to be a guideline for designing Hanok in different sizes and forms. The results are as follows. The building area of Hanok standard design was set to be below $85m^2$, with a straight type of $83.16m^2$ and an L-shape of $84.24m^2$. By dividing the plane into a straight type and L-shape, two straight types were suggested: 'general type' and 'large living room type.' The upper floor space, along with the main room and small room, was proposed as an option to be changed into a room where an underfloor heating is installed depending on the building owner's intention. In addition, a criterion for side design and calculation of framework measurements was suggested and applied, while a five-girder design without high pillars was suggested for material-assembling structure. Two types of pillars-circumference and square cylinder-were proposed for the building owner to choose from, and a pointed beam house and ikgong(orthogonally-projected bracket) house were suggested for pojak bracket structure so either of them could be chosen according to the building owner's taste and economic condition. Finally, the sectional size of main materials were divided according to the form of pojak bracket structure to be proposed.

Seismic Capacity Evaluation of Rectangular RC Columns Strengthened with Steel Bars (강봉으로 보강된 RC 사각기둥의 내진 성능 평가)

  • Dongmin Lee;Seong-Cheol Lee;Dong-Ho Shin;Chang Kook Oh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.283-293
    • /
    • 2023
  • With the steady increase in the annual number of earthquakes in South Korea, the need to apply seismic reinforcement on public facilities has recently increased. To reinforce seismic capacity, spaced full-column-height steel bars are attached to column faces. In this study, nonlinear finite element analysis was conducted to analyze the effect of external reinforcement steel bars on the seismic capacity of RC columns with a square or rectangular cross-section. For verification, the analysis results were compared with test results. Results showed that the finite element analysis reasonably predicted the actual structural behavior of RC columns with steel bars. In addition, both the analysis and the test results showed that the failure mode was converted from brittle failure to ductile fracture, owing to the external reinforcement steel bars. Both loading capacity and ductility were increased as well. Therefore, the external reinforcement steel bar can effectively enhance the seismic capacity of existing RC columns. This study is expected to contribute to relevant research areas such as the development of design methods.