• Title/Summary/Keyword: section number

Search Result 1,737, Processing Time 0.026 seconds

The effect of independent treadmill training on gait, balance and trunk control in a patient with chronic stroke (트레드밀 훈련이 뇌졸중 환자의 보행, 균형 및 체간조절에 미치는 영향)

  • Yoon, Seoung-Ic;Chun, Seung-Chul;Lee, Ju-Sang;Geoung, Shin-Ho;Lee, Duck-Sung;Oh, Duck-Won;Shim, Jae-Hun;Lee, Gyu-Wan
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.2
    • /
    • pp.37-45
    • /
    • 2006
  • The purpose of this study was to determine the effect of treadmill training on gait, balance, and trunk control in a patient with hemiparesis. A female subject who had suffered a left hemiparesis 12 months previously was selected for this study. A single subject ABA design was used. Eight data-collection sessions were conducted during each of three phases (baseline-intervention-withdrawal). During baseline and withdrawal phases, the treatment based on Bobath approach was performed for the subject, and during the intervention phase, treadmill walking training was added. Assessment tools were made using the 10 m walk test, Rivermead Visual Gait Assessment(RVGA), Berg Balance Scale(BBS), and a seated Lateral Reach Test(LRT). During the intervention phase, the time measured in 10 m walk test and the scores of RVGA and BBS were significantly improved, and the number of steps in 10 m walk test and LRT showed a small improvement. During withdrawal phase, the time measured in 10 m walk test and the scores of RVGA and BBS were shown the carry-over effect. This findings indicate that treadmill training has significant effect to gait function and balance in a patient with chronic hemiparesis.

  • PDF

Natural frequencies and mode shapes of thin-walled members with shell type cross section

  • Ohga, M.;Shigematsu, T.;Hara, T.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.223-236
    • /
    • 2002
  • An analytical procedure based on the transfer matrix method to estimate not only the natural frequencies but also vibration mode shapes of the thin-walled members composed of interconnected cylindrical shell panels is presented. The transfer matrix is derived from the differential equations for the cylindrical shell panels. The point matrix relating the state vectors between consecutive shell panels are used to allow the transfer procedures over the cross section of the members. As a result, the interactions between the shell panels of the cross sections of the members can be considered. Although the transfer matrix method is naturally a solution procedure for the one-dimensional problems, this method is well applied to thin-walled members by introducing the trigonometric series into the governing equations of the problem. The natural frequencies and vibration mode shapes of the thin-walled members composed of number of interconnected cylindrical shell panels are observed in this analysis. In addition, the effects of the number of shell panels on the natural frequencies and vibration mode shapes are also examined.

Numerical Study on Pulsatile Flow and Heat Transfer in a Curved Tube with Constant Heat Flux (일정 열유속을 받는 곡관내에서의 맥동 열유동에 관한 수치적 연구)

  • 백영렬;이재헌;오명도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1031-1038
    • /
    • 1994
  • Characteristics of pulsatile flow and heat transfer have been studied numerically in the constant heat flux curved tube with periodic pressure gradient. As the Womersley number increases, the phase difference between the pressure gradient and the cross section averaged axial velocity becomes larger. In case of the Womersley number $\beta = 2$, when cross section averaged axial velocity reaches periodic state with time, the reverse and the natural flow coexist at phase angle, $\lambda = 1.44\pi$ and $\lambda =1.96\pi$. For all the Womersley numbers of present investigation, the time variation of wall temperature near inner wall is higher than that of near outer wall, independent of phase angle.

CFD analysis of geometric parameters that affect dean flow in a helical microchannel

  • Prasad, Bibin;Kim, Jung Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1269-1274
    • /
    • 2014
  • Due to the presence of Dean flow in curved ducts, helical channels have drawn attention recently because of the practical industrial applications. The manipulation of fluids through microfluidic devices is widely used in many scientific and industrial areas. In the present study, numerical simulations were performed on a helical microchannel to predict the impact of different design parameters that affect Dean flow. Important geometric parameters such as the channel cross section, pitch, radius of curvature, and number of turns were considered for the analysis. The study also incorporates the effect of varying flow rate on Dean flows. It was found from the simulation results that microchannel cross section and pitch have a significant impact on maintaining the Dean flow, compared to the radius of curvature, number of turns, and flow rate.

A Fault-tolerant Mutual Exclusion Algorithm in Asynchronous Distributed Systems

  • Kim, Yoon
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • Mutual Exclusion is one of the most studied topics in distributed systems where processes communicate by asynchronous message passing. It is often necessary for multiple processes at different sites to access a shared resource or data called a critical section (CS) in distributed systems. A number of algorithms have been proposed to solve the mutual exclusion problem in distributed systems. In this paper, we propose the new algorithm which is modified from Garg's algorithm[1] thus works properly in a fault-tolerant system. In our algorithm, after electing the token generator, the elected process generates a new token based on the information of the myreqlist which is kept by every process and the reqdone which is received during election. Consequently, proposed algorithm tolerates any number of process failures and also does even when only one process is alive.

Wave Motion of Helical Springs with a Circular Section (원형 단면을 갖는 헬리컬 스프링에 대한 파동)

  • Lee, Jae-Hyeong;Heo, Seung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.866-873
    • /
    • 2001
  • The governing partial differential equations of a helical spring with a circular section were derived from Frenet formulas and Timoshenko beam theory. These were solved to give the dispersion relationship between wave number and frequency along with wave form. Wave motions of helical springs are categorized by 4 regimes. In the first regime, the lower frequency area, the torsional and extensional waves of the spring are predominant and two waves are composite wave motions involving lateral motion of the coils and rotation of the coils about a horizontal axis. All waves are propagating in the second regime. The wave of the extensional motion of the spring and one wave of transverse motion of a wire change from travelling waves to near field waves in the third regime. Both waves excited by both axial and transverse motion are predominant in the fourth regime.

Influence of Stacking Condition on Collision Safety of CFRP Side Member (적층구성이 CFRP 사이드 부재의 충돌안전성에 미치는 영향)

  • Hwang, Woo Chae;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.14-19
    • /
    • 2014
  • The global demand for reduction in the weight of automobiles has led many countries to focus on the development of hybrid, eco-friendly, and electric cars. Reduction in the weight of materials can both increase fuel efficiency and maximize automobile performance. Therefore, the design of automobile should be inclined towards the safety aspects. but at the same time, it also consider reducing the structural weight of an automobile. In this study, CFRP side members with circular and double hat shaped section was manufactured. The impact collapse tests performed with change of the stacking condition, such as variation of interface number and outerlayer angle. The impact collapse load and absorbed energy were quantitatively analyzed according to the changes in section shapes and stacking condition. This analysis was performed to obtain design data that can be applied in the development of optimum lightweight members for automobiles.

Optimum Alignment of Marine Engine Shaftings by the Finite Element Method (有限要素法에 의한 舶用機關軸系裝置의 最適配置에 關한 硏究)

  • Jeon, Hio-Jung;Park, Jin-Gil;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.3-14
    • /
    • 1978
  • The authors have developed a calculating method of propeller shaft alignment by the finite element method. The propeller shaft is divided into finite elements which can be treated as uniform section bars. For each element, the nodal point equation is derived from the stiffness matrix, the external force vector and the section force vector. Then the overall nodal point equation is derived from the element nodal point equation. The deflection, offset, bending moment and shearing force of each nodal point are calculated from the overall nodal point equation by the digital computer. Reactions and deflections of supporting points of straight shaft are calculated and also the reaction influence number is derived. With the reaction influence number the optimum alignment condition that satisfies all conditions is calculated by the simplex method of linear programming. All results of calculation are compared with those of Det norske Veritas, which has developed a computor program based on the three-moment theorem of the strength of materials. The authors finite element method has shown good results and will be used effectively to design the propeller shaft alignment.

  • PDF

Three-Dimensional Analysis of the Turbulent Wingtip Vortex Flows of a Wing with NACA 16-020 Airfoil Section (NACA16-020 익형의 단면을 갖는 날개 끝 와류 현상에 대한 3 차원 난류유동 해석)

  • Jeong, Nam-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.635-642
    • /
    • 2009
  • The three-dimensional turbulent wingtip vortex flows have been examined in the present study by using the commercial code FLUENT. The standard ${\kappa}-{\varepsilon}$ model is used as a closure relationship. The wing is constructed by using an elliptic body whose aspect ratio is 3.8 and the NACA 16-020 airfoil section. The simulations for various angle attack (${\alpha}=0^{\circ}$, $5^{\circ}$, and $10^{\circ}$) are carried out. The effect of Reynolds number is also investigated in this study. As the angle attack increases, the wingtip vortex becomes stronger. However, the relative vortex strength to inlet velocity decreases as Reynolds number increases.

Vortex excitation model. Part I. mathematical description and numerical implementation

  • Lipecki, T.;Flaga, A.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.457-476
    • /
    • 2013
  • This paper presents theoretical background for a semi-empirical, mathematical model of critical vortex excitation of slender structures of compact cross-sections. The model can be applied to slender tower-like structures (chimneys, towers), and to slender elements of structures (masts, pylons, cables). Many empirical formulas describing across-wind load at vortex excitation depending on several flow parameters, Reynolds number range, structure geometry and lock-in phenomenon can be found in literature. The aim of this paper is to demonstrate mathematical background of the vortex excitation model for a theoretical case of the structure section. Extrapolation of the mathematical model for the application to real structures is also presented. Considerations are devoted to various cases of wind flow (steady and unsteady), ranges of Reynolds number and lateral vibrations of structures or their absence. Numerical implementation of the model with application to real structures is also proposed.