• Title/Summary/Keyword: secretory protein

Search Result 244, Processing Time 0.022 seconds

DISEASE DIAGNOSED AND DESCRIBED BY NIRS

  • Tsenkova, Roumiana N.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1031-1031
    • /
    • 2001
  • The mammary gland is made up of remarkably sensitive tissue, which has the capability of producing a large volume of secretion, milk, under normal or healthy conditions. When bacteria enter the gland and establish an infection (mastitis), inflammation is initiated accompanied by an influx of white cells from the blood stream, by altered secretory function, and changes in the volume and composition of secretion. Cell numbers in milk are closely associated with inflammation and udder health. These somatic cell counts (SCC) are accepted as the international standard measurement of milk quality in dairy and for mastitis diagnosis. NIR Spectra of unhomogenized composite milk samples from 14 cows (healthy and mastitic), 7days after parturition and during the next 30 days of lactation were measured. Different multivariate analysis techniques were used to diagnose the disease at very early stage and determine how the spectral properties of milk vary with its composition and animal health. PLS model for prediction of somatic cell count (SCC) based on NIR milk spectra was made. The best accuracy of determination for the 1100-2500nm range was found using smoothed absorbance data and 10 PLS factors. The standard error of prediction for independent validation set of samples was 0.382, correlation coefficient 0.854 and the variation coefficient 7.63%. It has been found that SCC determination by NIR milk spectra was indirect and based on the related changes in milk composition. From the spectral changes, we learned that when mastitis occurred, the most significant factors that simultaneously influenced milk spectra were alteration of milk proteins and changes in ionic concentration of milk. It was consistent with the results we obtained further when applied 2DCOS. Two-dimensional correlation analysis of NIR milk spectra was done to assess the changes in milk composition, which occur when somatic cell count (SCC) levels vary. The synchronous correlation map revealed that when SCC increases, protein levels increase while water and lactose levels decrease. Results from the analysis of the asynchronous plot indicated that changes in water and fat absorptions occur before other milk components. In addition, the technique was used to assess the changes in milk during a period when SCC levels do not vary appreciably. Results indicated that milk components are in equilibrium and no appreciable change in a given component was seen with respect to another. This was found in both healthy and mastitic animals. However, milk components were found to vary with SCC content regardless of the range considered. This important finding demonstrates that 2-D correlation analysis may be used to track even subtle changes in milk composition in individual cows. To find out the right threshold for SCC when used for mastitis diagnosis at cow level, classification of milk samples was performed using soft independent modeling of class analogy (SIMCA) and different spectral data pretreatment. Two levels of SCC - 200 000 cells/$m\ell$ and 300 000 cells/$m\ell$, respectively, were set up and compared as thresholds to discriminate between healthy and mastitic cows. The best detection accuracy was found with 200 000 cells/$m\ell$ as threshold for mastitis and smoothed absorbance data: - 98% of the milk samples in the calibration set and 87% of the samples in the independent test set were correctly classified. When the spectral information was studied it was found that the successful mastitis diagnosis was based on reviling the spectral changes related to the corresponding changes in milk composition. NIRS combined with different ways of spectral data ruining can provide faster and nondestructive alternative to current methods for mastitis diagnosis and a new inside into disease understanding at molecular level.

  • PDF

Disturbance of $\alpha$-Amylase Secretion from Bacillus amyloliquefaciens Cells by the Treatment of Puromycin and Magnesium (Bacillus amyloliquefaciens에서 Puromycin 과 Magnesium에 의한 $\alpha$-Amylase 의 분비저해)

  • 안순자;김순옥;이동희;송방호
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.412-420
    • /
    • 1989
  • To know how the ribosomes involved in secretory protein synthesis were attached to the cytoplasmic membrane in Bacillus amyloliquefaciens, the cells were treated with puromycin combinated with magnesium at the logarithmic phase, and the variation of cell-bound and extracellular $\alpha$-amylase activity was assayed for determining the $\alpha$-amylase translocation blocking through the cytoplasmic membrane. In the abnormal $\alpha$-amylase producing mutant in which the C-terminal of the $\alpha$-amylase structure was deleted, B. umytotiquefaciens CH10-2, the $\alpha$-amylase was translocated normally through the cytoplasmic membranes, and the translocation blocking by puromycin was revealed to have a similar pattern as that in the wild type. This means that the C-terminal part of the enzyme structure may not have a signal for secretion. The cell death of the logarithmic phase cells in both strains was not affected much under 20$\mu\textrm{g}$/$m\ell$ of puromycin, however, the $\alpha$-amylase translocation was blocked markedly under less than 10$\mu\textrm{g}$/$m\ell$ of the puromycin concentration. The blocking of the enzyme secretion by puromycin may be due to the detachment of the ribosomes from cytoplasmic membranes by disturbing the nascent polypeptide synthesis. Further evidence for confirming this was that the detachment was increased in 50 mM of magnesium ion because the extracellular $\alpha$-amylase activity was decreased more under this condition. If the cells were treated with trypsin combinated with Iysozyme, the extracellular $\alpha$-amylase activity from the cultured medium was reduced markedly, however, the activity from the cells treated with trypsin only was not reduced. This means that the nascent polypeptides protruding from the cytoplasmic membrane were sensitive to the trypsin digestion, whereas the matured ones were not. Therefore, the protruding polypeptides from the cytoplasmic membranes may be truncated by trypsin before forming their final tertiary structures by folding in the cell wall layer.

  • PDF

Antigenic localities in the tissued of Metagonimus yokogawai observed by immunogoldlabeling method (면역황금 표식법을 이용한 요꼬가와흡충의 조직내 항원성 부위에 관한 연구)

  • Ahn, Hyuk;Rim, Han-Jong;Kim, Soo-Jin
    • Parasites, Hosts and Diseases
    • /
    • v.29 no.3
    • /
    • pp.245-258
    • /
    • 1991
  • In order to determine the antigenic localization in the tissues of the adult Metagonimus yokegawai, immunogoldlabeling method was applied using serum immunoglobulins (IgG) of cats which were infected with isolated metacercariae from Plecoglossus altivelis. The sectioned worm tissue was embedded in Lowicryl HM 20 medium and stained with infected serum IgG and protein A gold complex (particle size: 12 nm) , It was observed by electron microscopy at each tissue of the worm. The gold particles were observed on the tegumental syncytium as well as cytoplasm of tegumental cells and epithelial lamella of the caecum. The gold particles were not observed on the basal lamina of the tegument, interstitial matrix of the parenchyma, the muscle tissue and mitochondria of the tegument. The gold particles were specifically labeled in the secretory granules in the vitelline cells. They were also labeled on the lumen of bladder and egg shell. The above findings showed that antigenic materials in the tissue of adult worms were specifically concentrated on the tegumental syncytium as well as cytoplasm of tegumental cells and epithelial lamella of the caecum.

  • PDF

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF