• 제목/요약/키워드: secrecy

검색결과 249건 처리시간 0.027초

Key Establishment and Pairing Management Protocol for Downloadable Conditional Access System Host Devices

  • Koo, Han-Seung;Kwon, O-Hyung;Lee, Soo-In
    • ETRI Journal
    • /
    • 제32권2호
    • /
    • pp.204-213
    • /
    • 2010
  • In this paper, we investigate the possible security threats to downloadable conditional access system (DCAS) host devices. We then propose a DCAS secure micro (SM) and transport processor (TP) security protocol that counters identified security threats using a secure key establishment and pairing management scheme. The proposed protocol not only resists disclosed SM ID and TP ID threats and indirect connection between TA and TP threats, but also meets some desirable security attributes such as known key secrecy, perfect forward secrecy, key compromised impersonation, unknown key-share, and key control.

Cooperative Beamformer Design for Improving Physical Layer Security in Multi-Hop Decode-and-Forward Relay Networks

  • Lee, Han-Byul;Lee, Jong-Ho;Kim, Seong-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.187-199
    • /
    • 2016
  • In this paper, we consider secure communications in multi-hop relaying systems, where multiple decode-and-forward (DF) relays are located at each individual hop and perform cooperative beamforming to improve physical layer security. In order to determine the cooperative relay beamformer at each hop, we propose an iterative beamformer update scheme using semidefinite relaxation and bisection techniques. Numerical results are presented to verify the secrecy rate performance of the proposed scheme.

Survey on Physical Layer Security in Downlink Networks

  • Abbas, Mohammed Adil;Hong, Jun-Pyo
    • Journal of information and communication convergence engineering
    • /
    • 제15권1호
    • /
    • pp.14-20
    • /
    • 2017
  • In this paper, we discuss physical layer security techniques in downlink networks, including eavesdroppers. The main objective of using physical layer security is delivering a perfectly secure message from a transmitter to an intended receiver in the presence of passive or active eavesdroppers who are trying to wiretap the information or disturb the network stability. In downlink networks, based on the random feature of channels to terminals, opportunistic user scheduling can be exploited as an additional tool for enhancing physical layer security. We introduce user scheduling strategies and discuss the corresponding performances according to different levels of channel state information (CSI) at the base station (BS). We show that the availability of CSI of eavesdroppers significantly affects not only the beamforming strategy but also the user scheduling. Eventually, we provide intuitive information on the effect of CSI on the secrecy performance by considering three scenarios: perfect, imperfect, and absence of eavesdropper's CSI at the BS.

Improving a Forward & Backward Secure Key Management Scheme for Wireless Sensor Networks

  • Park, Dong-Gook
    • Journal of information and communication convergence engineering
    • /
    • 제7권4호
    • /
    • pp.521-524
    • /
    • 2009
  • Park proposed a forward & backward Secure key management scheme in wireless sensor networks for Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems [7]. The scheme, however, is still vulnerable to an attack called "sandwich attack": two nodes captured at times $t_1$ and $t_2$, respectively, surrenders all the group keys used between times $t_1$ and $t_2$. In this paper, we propose a fix to the scheme, which can limit the vulnerable time duration to an arbitrarily chosen time span while keeping the forward and backward secrecy of the scheme untouched.

A New Group Key Management Protocol for WSN

  • ;이상민;박종서
    • 융합보안논문지
    • /
    • 제8권1호
    • /
    • pp.143-152
    • /
    • 2008
  • Sensor networks have a wide spectrum of military and civil applications, particularly with respect to security and secure keys for encryption and authentication. This thesis presents a new centralized approach which focuses on the group key distribution with revocation capability for Wireless Sensor Networks. We propose a new personal key share distribution. When utilized, this approach proves to be secure against k-number of illegitimate colluding nodes. In contrast to related approaches, our scheme can overcome the security shortcomings while keeping the small overhead requirements per node. It will be shown that our scheme is unconditionally secure and achieves both forward secrecy and backward secrecy. The analysis is demonstrated in terms of communication and storage overheads.

  • PDF

Security performance analysis of SIMO relay systems over Composite Fading Channels

  • Sun, Jiangfeng;Bie, Hongxia;Li, Xingwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권6호
    • /
    • pp.2649-2669
    • /
    • 2020
  • In this paper, we analyze the secrecy performance of single-input multiple-output (SIMO) relay systems over κ-μ shadowed fading channels. Based on considering relay model employing decode-and-forward (DF) protocol, two security evaluation metrics, namely, secure outage probability (SOP) and probability of strictly positive secrecy capacity (SPSC) are studied, for which closed-form analytical expressions are derived. In addition, Monte Carlo results prove the validity of the theoretical derivation. The simulation results confirm that the factors that enhance the security include large ratio of (μD, μE), (mD, mE), (LD, LE) and small ratio of (kD, kE) under the high signal-to-noise ratio regime.

Switch-and-Stay Combining 기반 Mixed RF/FSO Dual-hop 전송 시스템 성능 분석 (Performance Analysis of Mixed RF/FSO Dual-hop Transmission with Switch-and-Stay Combining)

  • 황규성
    • 한국멀티미디어학회논문지
    • /
    • 제21권4호
    • /
    • pp.493-498
    • /
    • 2018
  • In this paper, we provide the performance analyses of a dual-hop amplify-and-forward(AF) relay transmission composed of asymmetric radio-frequence(RF) and free-space optical(FSO) links. In the mixed RF/FSO system, a relay is equipped with two receive antennas for RF signals and one additional transmit antenna for FSO signals. In order to improve a performance of RF link, a switch-and-stay (SSC) diversity technique is applied at the relay which can provide a proper link performance with a low complexity. Specifically, we offer the performance analyses of the proposed system in terms of outage probability and secrecy outage probability. In numerical examples, we compare the system performances with no diversity and selection combining systems and verify our analytical results via computer-based Monte-Carlo simulations.

Cryptanalysis of Hu-Niu-Yang's Multi-server Password Authenticated Key Agreement Schemes Using Smart Card

  • Lee, Sang-Gon;Lim, Meng-Hui;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • 제7권3호
    • /
    • pp.340-344
    • /
    • 2009
  • Multi-server password authentication schemes enable remote users to obtain service from multiple servers with single password without separately registering to each server. In 2007, Hu-Niu-Yang proposed an improved efficient password authenticated key agreement scheme for multi-server architecture based on Chang-Lee's scheme proposed in 2004. This scheme is claimed to be more efficient and is able to overcome a few existing deficiencies in Chang-Lee's scheme. However, we find false claim of forward secrecy property and some potential threats such as offline dictionary attack, key-compromise attack, and poor reparability in their scheme. In this paper, we will discuss these issues in depth.

A Method Enabling Exploitation of Spatial Diversity and Physical Layer Security in an Extreme Case of Source-Wiretapping without a Jamming Beamformer

  • Tran, Truc Thanh;Kong, Hyung Yun
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.482-490
    • /
    • 2015
  • This article exploits spatial diversity for jamming to prevent wiretapping in the extreme case in which an eavesdropper is located near the source and a common jamming signal is unavailable. To address this challenge, the jamming signal is allowed to carry a random binary message. Then, it is proposed that the active intermediate node transmits this jamming signal and the decoding of this signal at both source and destination is physically secured as result of using the physical-layer security method. If the source and the destination securely and correctly decode this jamming message, the source transmits another message which is created from combining its information message and the decoded message using the network-coding method. Therefore, this method prevents the transmissions from being eavesdropped upon by the source-wiretapping.

Joint Beamforming and Jamming for Physical Layer Security

  • Myung, Jungho;Heo, Hwanjo;Park, Jongdae
    • ETRI Journal
    • /
    • 제37권5호
    • /
    • pp.898-905
    • /
    • 2015
  • In this paper, we consider a joint beamforming and jamming design to enhance physical layer security against potential multiple eavesdroppers in a multiple-input and single-output cellular broadcast channel. With perfect channel state information at the base station, we propose various design approaches to improve the secrecy of the target user. Among the proposed approaches, the combined beamforming of maximum ratio transmission and zero-forcing transmission with a combination of maximum ratio jamming and zero-forcing jamming (MRT + ZFT with MRJ + ZFJ) shows the best security performance because it utilizes the full transmit antenna dimensions for beamforming and jamming with an efficient power allocation. The simulation results show that the secrecy rate of this particular proposed approach is better than the rates of the considered conventional approaches with quality-of-service and outage probability constraints.