• 제목/요약/키워드: secondary ion mass spectroscopy

검색결과 145건 처리시간 0.024초

Li:Al cathode layer and its influence on interfacial energy level and efficiency in polymer-based photovoltaics

  • 박순미;전지혜;박오옥;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.72-72
    • /
    • 2010
  • Recent development of organic solar cell approaches the level of 8% power conversion efficiency by the introduction of new materials, improved material engineering, and more sophisticated device structures. As for interface engineering, various interlayer materials such as LiF, CaO, NaF, and KF have been utilized between Al electrode and active layer. Those materials lower the work function of cathode and interface barrier, protect the active layer, enhance charge collection efficiency, and induce active layer doping. However, the addition of another step of thin layer deposition could be a little complicated. Thus, on a typical solar cell structure of Al/P3HT:PCBM/PEDOT:PSS/ITO glass, we used Li:Al alloy electrode instead of Al to render a simple process. J-V measurement under dark and light illumination on the polymer solar cell using Li:Al cathode shows the improvement in electric properties such as decrease in leakage current and series resistance, and increase in circuit current density. This effective charge collection and electron transport correspond to lowered energy barrier for electron transport at the interface, which is measured by ultraviolet photoelectron spectroscopy. Indeed, through the measurement of secondary ion mass spectroscopy, the Li atoms turn out to be located mainly at the interface between polymer and Al metal. In addition, the chemical reaction between polymer and metal electrodes are measured by X-ray photoelectron spectroscopy.

  • PDF

Preparation and Characterization of β-C3N4 in Presence of Seed Carbon Nitride Films Deposited by Laser-Electric Discharge Method

  • Kim, J.I.;Zorov, N.B.;Burdina, K.P
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권3호
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure was developed for preparing bulk carbon nitride crystals from a polymeric $\alpha$ -C$_3$N$\_$4.2/ at high pressure and temperature in the presence of seeds of crystalline carbon nitride films prepared by a high voltage discharge plasma combined with pulsed laser ablation of graphite target. The samples were evaluated by x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, Auger electron spectroscopy (AES), secondary-ion mass spectrometry (SIMS), scanning electron microscopy (SEM) and x-ray diffraction (XRD). Notably, XPS studies of the film composition before and after thermobaric treatments demonstrate that the nitrogen composition in $\alpha$ -C$_3$N$\_$4.2/ material initially containing more than 58% nitrogen decreases during the annealing process and reaches a common, stable composition of ~45%. The thermobaric experiments were performed at 10-77 kbar and 350-1200 $\^{C}$.

부식작용으로 인하여 디스크면으로 이동된 코발트가 Thermal Asperity 현상에 미치는 영향 (The Study of Corrosion Induced Co migration and Its Effect on Thermal Asperity Phenomenon)

  • 좌성훈
    • Tribology and Lubricants
    • /
    • 제15권4호
    • /
    • pp.335-342
    • /
    • 1999
  • Corrosion of the disk has been an ongoing concern for the manufacturers of hard disk drives. With the advent of magnetoresistive (MR) head, very low levels of corrosion and contamination become more critical since the raised defects and corrosion products on the disk surface-anything that heats the MR sensor due to the contact-can distort the output signal of the head. This phenomenon is called as thermal asperity. In this paper, the effect of corrosion as a form of Co migration on the occurrence of thermal asperity in MR drives was investigated. The corrosion test at high temperature (60$^{\circ}C$) and high relative humidity (80%) was emphasized in this study and the testing results at ambient condition were compared. The corrosion on the disks was characterized as the amount of Co ion migration using an ion chromatography (IC) and a time-of-flight secondary ion mass spectroscopy (TOF-SIMS). It is proved that corrosion on the disk surface after storage testing is closely correlated to the amount of Co ions migration from the magnetic layer to disk surfaces and higher Co migration causes more thermal asperities in the drive. In order to reduce Co migration, several methods such as burnishing process and structure of the carbon overcoat were investigated. It is found that the hydrogenated carbon overcoat shows the least Co migration among different types of overcoat layer. However, the most effective way to reduce Co migration is the application of Cr layer between the overcoat and the magnetic alloy layer.

고밀도 $Cl_2$/Ar 플라즈마를 이용한 $YMnO_3$ 박막의 식각 특성에 관한 연구 (A Study on the Etching Characteristics of $YMnO_3$ Thin Films in High Density $Cl_2$/Ar Plasma)

  • 민병준;김창일;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.21-24
    • /
    • 2000
  • Ferroelectric YMnO$_3$ thin films are excellent dielectric materials for high integrated ferroelectric random access memory (FRAM) with metal-ferroelectric-silicon field effect transistor (MFSFET) structure. In this study, YMnO$_3$ thin films were etched with C1$_2$/Ar gas chemistries in inductively coupled plasma (ICP). The maximum etch rate of YMnO$_3$ thin films is 285 $\AA$/min under C1$_2$/Ar of 10/0, 600 W/-200 V and 15 mTorr. The selectivities of YMnO$_3$ over CeO$_2$ and $Y_2$O$_3$ are 2.85, 1.72, respectively. The results of x-ray photoelectron spectroscopy (XPS) reflect that Y is removed dominantly by chemical reaction between Y and Cl, while Mn is removed more effective by Ar ion bombardment than chemical reaction. The results of secondary ion mass spectrometer (SIMS) were equal to these of XPS. The etch profile of the etched YMnO$_3$ film is approximately 65$^{\circ}$and free of residues at the sidewall.

  • PDF

재산화 질화산화막의 기억트랩 분석과 프로그래밍 특성 (A Study on the Memory Trap Analysis and Programming Characteristics of Reoxidized Nitrided Oxide)

  • 남동우;안호명;한태현;서광열;이상은
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.17-20
    • /
    • 2001
  • Nonvolatile semiconductor memory devices with reoxidized nitrided oxide(RONO) gate dielectrics were fabricated, and nitrogen distribution and bonding species which contribute to memory characteristics were analyzed. Also, memory characteristics of devices depending on the anneal temperatures were investigated. The devices were fabricated by retrograde twin well CMOS processes with $0.35{\mu}m$ Nonvolatile semiconductor memory devices with reoxidized nitrided oxide(RONO) gate dielectric were fabricated, and nitrogen distribution and bonding species which contributing memory characteristics were analyzed. Also, memory characteristics of devices according to anneal temperatures were investigated. The devices were fabricated by $0.35{\mu}m$ retrograde twin well CMOS processes. The processes could be simple by in-situ process of nitridation anneal and reoxidation. The nitrogen distribution and bonding state of gate dielectric were investigated by Dynamic Secondary Ion Mass Spectrometry(D-SIMS), Time-of-Flight Secondary Ion Mass Spectrometry(ToF-SIMS), and X-ray Photoelectron Spectroscopy(XPS). Nitrogen concentrations are proportional to nitridation anneal temperatures and the more time was required to form the same reoxidized layer thickness. ToF-SIMS results show that SiON species are detected at the initial oxide interface and $Si_{2}NO$ species near the new $Si-SiO_{2}$ interface that formed after reoxidation. As the anneal temperatures increased, the device showed worse retention and degradation properties. These could be said that nitrogen concentration near initial interface is limited to a certain quantity, so excess nitrogen are redistributed near the $Si-SiO_{2}$ interface and contributed to electron trap generation.

  • PDF

고강도 구조용 철강소재의 대입열 용접 시 열영향부의 조직 미세화 및 기계적 특성 향상에 미치는 TiN 및 B의 효과 (Effects of TiN and B on Grain Refinement of HAZ Microstructure and Improvement of Mechanical Properties of High-strength Structural Steel Under High Heat Input Welding)

  • 박진성;황중기;조재영;한일욱;이만재;김성진
    • 한국재료학회지
    • /
    • 제29권2호
    • /
    • pp.97-105
    • /
    • 2019
  • In the current steel structures of high-rise buildings, high heat input welding techniques are used to improve productivity in the construction industry. Under the high heat input welding, however, the microstructures of the weld metal (WM) and heat-affected zone (HAZ) coarsen, resulting in the deterioration of impact toughness. This study focuses mainly on the effects of fine TiN precipitates dispersed in steel plates and B addition in welding materials on grain refinement of the HAZ microstructure under submerged arc welding (SAW) with a high heat input of 200 kJ/cm. The study reveals that, different from that in conventional steel, the ${\gamma}$ grain coarsening is notably retarded in the coarse grain HAZ (CGHAZ) of a newly developed steel with TiN precipitates below 70 nm in size even under the high heat input welding, and the refinement of HAZ microstructure is confirmed to have improved impact toughness. Furthermore, energy dispersive spectroscopy (EDS) and secondary-ion mass spectrometry (SIMS) analyses demonstrate that B is was identified at the interface of TiN in CGHAZ. It is likely that B atoms in the WM are diffused to CGHAZ and are segregated at the outer part of undissolved TiN, which contributes partly to a further grain refinement, and consequently, improved mechanical properties are achieved.

TOF-SIMS를 이용한 광물 표면의 단층조직 분석 연구 (Mono-layer Compositional Analysis of Surface of Mineral Grains by Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS))

  • 공봉성;;김주영
    • 한국광물학회지
    • /
    • 제18권2호
    • /
    • pp.127-134
    • /
    • 2005
  • 금속제련공학 및 환경과학 분야에 있어서 물질전체를 구성하고 있는 화학적 조성이 중요한 요소이나, 입자 표면의 화학조성과 미분화된 입자들의 표면 반응성을 제어함과 동시에, 입자 계면에서 일어나는 중금속과 유기물질등의 반응은 제련공정과 환경오염에 중요한 역할을 한다. 그러므로, 수용액상에 존재하는 여러 종류의 화학 물질과 광물입자 표면 사이에서 일어나는 계면반응 과정의 이해는 상당히 중요한 것이다. 일반적으로 입자 표면 분석에는 ex-situ 법을 사용하는 X-ray photo-electron spectroscopy (XPS) 분석 방법이 많이 적용되고 있으나, 이는 분석대상시료의 크기가 보통 100 마이크론에서 1 cm 정도의 범위 안에 혼재-혼합되어있는 고체 입자들을 분석하기 때문에 채취 분석된 X-ray의 원래 발산한 입자표면을 분석할 수는 없다. 그래서 본 연구에서는 Time-of-Flight Secondary-Ion Mass Spectroscopy (TOF-SIMS)를 응용하여 황화광물의 부유선광 공정 중 생성된 미세한 유화광물입자$(30\~75\;microns)$ 표면에 형성된 무기, 유기물의 반응 관찰을 통해 이들의 정성분석 및 상대적 정량분석법을 연구하고자 하였다.

Ulra shallow Junctions을 위한 플라즈마 이온주입 공정 연구 (The study of plasma source ion implantation process for ultra shallow junctions)

  • 이상욱;정진열;박찬석;황인욱;김정희;지종열;최준영;이영종;한승희;김기만;이원준;나사균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.111-111
    • /
    • 2007
  • Further scaling the semiconductor devices down to low dozens of nanometer needs the extremely shallow depth in junction and the intentional counter-doping in the silicon gate. Conventional ion beam ion implantation has some disadvantages and limitations for the future applications. In order to solve them, therefore, plasma source ion implantation technique has been considered as a promising new method for the high throughputs at low energy and the fabrication of the ultra-shallow junctions. In this paper, we study about the effects of DC bias and base pressure as a process parameter. The diluted mixture gas (5% $PH_3/H_2$) was used as a precursor source and chamber is used for vacuum pressure conditions. After ion doping into the Si wafer(100), the samples were annealed via rapid thermal annealing, of which annealed temperature ranges above the $950^{\circ}C$. The junction depth, calculated at dose level of $1{\times}10^{18}/cm^3$, was measured by secondary ion mass spectroscopy(SIMS) and sheet resistance by contact and non-contact mode. Surface morphology of samples was analyzed by scanning electron microscopy. As a result, we could accomplish the process conditions better than in advance.

  • PDF

Study of PSII-treated PMMA, PHEMA, and PHPMA ; Investigation of Their Surface Stabilities

  • Hyuneui Lim;Lee, Yeonhee;Seunghee Han;Jeonghee Cho;Moojin suh;Kem, Kang-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.204-204
    • /
    • 1999
  • The plasma source ion implantation(PSII) technique which is a method using high negative voltage pulse in plasma system has the potential to change the surface properties of polymer. PSII technique increase the surface free energy by introducing polar functional groups on the surface so that it improves reactivity, hydrophilicity, adhension, biocompatability, etc. However, the mobility of polymer chains enables the modified surface layers to adapt their composition to interfacial force. This hydrophobic recovery interrupts the stability of modified surfaces to keep for the long time. In this study, poly(methyl methacrylate)(PMMA), poly(2-hydroxyethyl methacrylate)(PHEMA), and polu(2-hydroxypropyl methacylate)(PHPMA) for contact lens application, were modified to improve the wettability with PSII technique and were investigated the surface stabilities. Polymer film was prepared with solution casting(3 wt.% solution) and was annealed at 11$0^{\circ}C$ under vacuum oven to remove solvent completely and to eliminate physical ageing. The thickness of the film measured by scanning electron microscopy (SEM) and surface profilometer was about 10${\mu}{\textrm}{m}$. Polymers were treated with different kinds of gases, pulse frequency, pulse with, pulse voltage, and treatment time. Even though PMMA, PHEMA, and PHPMA have similar repeat unit structure, the optimal treatment conditions and the tendency to hydrophobic recovery were different. PHPMA, more hydrophilic polymer than PMMA and PHEMA showd better wettability and stability after mild treatment. Surface tensions were obtained by water and diiodomethane contact angle measurements to monitor the relation between hydrophobic recovery and polymer structure. Different ion species in plasma change the polar component and dispersion component of polymer surface. For better wettability surface, the increase of polar component was a dominant factor. We also characterized modified polymer surfaces using x-ray photoelectron spectroscopy(XPS), secondary ion mass spectrometry(SIMS), Fourier Transform infrared spectroscopy(FT-IR), and SEM.

  • PDF

A Study on Modified Silicon Surface after $CHF_3/C_2F_6$ Reactive Ion Etching

  • Park, Hyung-Ho;Kwon, Kwang-Ho;Lee, Sang-Hwan;Koak, Byung-Hwa;Nahm, Sahn;Lee, Hee-Tae;Kwon, Oh-Joon;Cho, Kyoung-Ik;Kang, Young-Il
    • ETRI Journal
    • /
    • 제16권1호
    • /
    • pp.45-57
    • /
    • 1994
  • The effects of reactive ion etching (RIE) of $SiO_2$ layer in $CHF_3/C_2F_6$ on the underlying Si surface have been studied by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometer, Rutherford backscattering spectroscopy, and high resolution transmission electron microscopy. We found that two distinguishable modified layers are formed by RIE : (i) a uniform residue surface layer of 4 nm thickness composed entirely of carbon, fluorine, oxygen, and hydrogen with 9 different kinds of chemical bonds and (ii) a contaminated silicon layer of about 50 nm thickness with carbon and fluorine atoms without any observable crystalline defects. To search the removal condition of the silicon surface residue, we monitored the changes of surface compositions for the etched silicon after various post treatments as rapid thermal anneal, $O_2$, $NF_3$, $SF_6$, and $Cl_2$ plasma treatments. XPS analysis revealed that $NF_3$ treatment is most effective. With 10 seconds exposure to $NF_3$ plasma, the fluorocarbon residue film decomposes. The remained fluorine completely disappears after the following wet cleaning.

  • PDF