• 제목/요약/키워드: secondary generated particle

검색결과 40건 처리시간 0.021초

게임 및 가상현실에서의 특수효과를 위한 입자 시스템 에디터 (Particle System Editor for Special Effects in Game and Virtual Reality)

  • 김응곤;송승헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.429-433
    • /
    • 2004
  • 게임과 영화는 현재 엔터테인먼트 산업에서 가장 각광을 받고 있는 분야이며, 이러한 분야에서는 입자 시스템을 이용하여 불꽃, 폭발, 연기, 액체, 눈, 비, 먼지와 같은 특수효과를 만들어 낸다. 게임 및 가상현실에서 상위 수준의 그래픽 라이브러리인 입자 시스템 API를 사용하면 위와 같은 특수효과를 사실적으로 표현할 수 있게 한다. 입자 시스템 API를 적용 시 개발자가 원하는 형태의 특수효과가 구현될 때까지 파라미터 값을 계속 바꿔가며 소스코드를 컴파일하여야 하며, 각 파라미터들 간의 연관성 있는 세밀한 조정이 이루어지기까지 많은 시간이 필요하다는 단점을 가지고 있다. 이에, 본 논문에서는 온라인 게임 및 실시간 가상현실에 실제 적용할 수 있는 입자 시스템 API를 개발하고 위치, 속도, 색상, 투명도, 크기, 수명, 2차 위치, 2차 속도 둥의 속성 조절을 통해 손쉽게 특수효과를 생성할 수 있는 입자 시스템 에디터를 개발하고자 한다.

  • PDF

몬테카를로 시뮬레이션을 통한 중하전입자의 콘크리트 방사화 비교평가 (Comparative Evaluation of Radioactive Isotope in Concrete by Heavy Ion Particle using Monte Carlo Simulation)

  • 배상일;조용인;김정훈
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권4호
    • /
    • pp.359-365
    • /
    • 2021
  • A heavy particle accelerator is a device that accelerates particles using high energy and is used in various fields such as medical and industrial fields as well as research. However, secondary neutrons and particle fragments are generated by the high-energy particle beam, and among them, the neutrons do not have an electric charge and directly interact with the nucleus to cause radiation of the material. Quantitative evaluation of the radioactive material produced in this way is necessary, but there are many difficulties in actual measurement during or after operation. Therefore, this study compared and evaluated the generated radioactive material in the concrete shield for protons and carbon ions of specific energy by using the simulation code FLUKA. For the evaluation of each energy of proton beam and carbon ion, the reliability of the source term was secured within 2% of the relative error with the data of the NASA Space Radiation Laboratory(NSRL), which is an internationally standardized data. In the evaluation, carbon ions exhibited higher neutron flux than protons. Afterwards, in the evaluation of radioactive materials under actual operating conditions for disposal, a large amount of short-lived beta-decay nuclides occurred immediately after the operation was terminated, and in the case of protons with a high beam speed, more radioactive products were generated than carbon ions. At this time, radionuclides of 44Sc, 3H and 22Na were observed at a high rate. In addition, as the cooling time elapsed, the ratio of long-lived nuclides increased. For nonparticulate radionuclides, 3H, 22Na, and for particulate radionuclides, 44Ti, 55Fe, 60Co, 152Eu, and 154Eu nuclides showed a high ratio. In this study, it is judged that it is possible to use the particle accelerator as basic data for facility maintenance, repair and dismantling through the prediction of radioactive materials in concrete according to the cooling time after operation and termination of operation.

PIV를 이용한 분지관모델내 3차원 맥동유동의 가시화 (Three-Dimensional Flow Visualization of Pulsatile Flow in a Branching Model using the PIV System)

  • 성순경;조민태;노형운;서상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.748-753
    • /
    • 2001
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCO camera for the image processing at several cross section. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

PIV와 수치해석을 이용한 분지관내 맥동유동의 가시화 (Flow Visualization of Pulsatile Flow in a Branching Tube using the PIV System and Numerical Analysis)

  • 노형운;서상호;유상신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.535-540
    • /
    • 2000
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCD camera for the image processing. The cross-correlation method in combination with the moving searching area algorithm was applied for the image processing of the flow visualization. The pulsatile flow fields were visualized effectively by the PIV system in conjunction with the applied algorithm. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

초음파 진동에 의해 발생된 음향유동을 활용한 급속냉각 메카니즘 (Rapid Cooling Mechanism Utilizing Acoustic Streaming Generated by Ultrasonic Vibrations)

  • 노병국;권기정;이동렬
    • 한국소음진동공학회논문집
    • /
    • 제16권10호
    • /
    • pp.1057-1066
    • /
    • 2006
  • Acoustic streaming Induced by longitudinal vibration at 30 kHz is visualized for a test fluid flow between the stationary glass plate and ultrasonic vibrating surface with particle imaging velocimetry (PIV) To measure an increase in the velocity of air flow due to acoustic streaming, the velocity of air flow in a gap between the heat source and ultrasonic vibrator is obtained quantitatively using PIV. The ultrasonic wave propagating into air in the gap generates steady-state secondary vortex called acoustic streaming which enhances convective cooling of the stationary heat source. Heat transfer through air in the gap is represented by experimental convective heat transfer coefficient with respect to the gap. Theoretical analysis shows that gaps for maximum heat transfer enhancement are the multiple of half wavelength. Optimal gaps for the actual design are experimentally found to be half wavelength and one wavelength. A drastic temperature variation exists for the local axial direction of the vibrator according to the measurement of the temperature distribution in the gap. The acoustic streaming velocity of the test fluid in the gap is at maximum when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which are specifically 6 mm and 12 mm.

서울시 대기중 입자상 오염물질의 조성에 관한 연구 (Ionic composition of aerosol particles under urban atmospheres of Seoul, Korea)

  • 한진석;김신도
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.389-398
    • /
    • 1996
  • In order to understand the relative importance of various pathways leading to the production and transformation of aerosols under different atmospheric conditions, the behavior of atmospheric aerosols have been investigated using a high volume tape sample in Seoul for a week period during August 1990. The concentrations of anion $(SO^{2-}_4, NO^-_3, CI^-)$ and cation $(Ca^{2+}, Na^+, NH^+_4)$ species of aerosol samples were analyzed to identify the ionic composition of aerosols and to estimate their relative contributions to aerosol formation. The concentrations of aerosol species were calculated by a multiple regression model. The results of our calculations indicate the existence of various chemical species such as $(NH_4)_2SO_4, Na_2SO_4, CaSO_4, NH_4NO_3, NaNO_3, Ca(NO_3)_2, NH_4Cl$, and NaCl salts. According to our calculations, the most dominant species of aerosol was $(NH_4)_2SO_4$ with the mean concentration of 23.3 $/mu g/m^3$ (66.9%). The proportion of different componts with aerosol (e.g., $NH_4NO_3$ and $NH_4Cl$) was strongly affected by temperature, relative humidity, and partial presure of gases.

  • PDF

마모 입자가 음향방출신호에 미치는 영향에 관한 연구 (Investigation of the Effect of Wear Particles on the Acoustic Emission Signal)

  • 한재호;신동갑;김대은
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.317-322
    • /
    • 2019
  • In spite of progress in tribological research, machine component failure due to friction and wear has been reported frequently. This failure may lead to secondary damage that can cause huge expense for maintenance and repair. To prevent economic loss, it is important to detect and predict the initial failure point. In this sense, various researchers have been tried to develop Condition Monitoring (CM) method using Acoustic Emission (AE) generated while the materials undergo failure. In this study, effect of particles on friction and wear was investigated using the pin-on-plate friction test and AE signal was recorded with a band-width type AE sensor. The experiments were performed in dry and lubricant conditions using steel and glass as specimens. After the experiment, 3D laser microscope image was captured to evaluate the wear behavior quantitatively. The AE signal was analyzed in time-domain and frequency-domain. The amplitude was compared with the frictional results. The results of this study showed that particle generation accelerate wear, generate high magnitude AE signal and change the frequency characteristics of the signal. Also, lubricant condition test results showed low coefficient of friction, low wear rate, and low magnitude of AE signal compared to the dry condition. It is expected that the results of this study will aid in better assessment of wear in CM technology

습식-펄스방전 복합시스템의 황산화물 및 질소산화물 제거성능 특성 (SOx and NOx removal performance by a wet-pulse discharge complex system)

  • 박현진;이환영;박문례;노학재;유정구;한방우;홍기정
    • 한국입자에어로졸학회지
    • /
    • 제15권1호
    • /
    • pp.1-13
    • /
    • 2019
  • Current desulfurization and denitrification technologies have reached a considerable level in terms of reduction efficiency. However, when compared with the simultaneous reduction technology, the individual reduction technologies have issues such as economic disadvantages due to the difficulty to scale-up apparatus, secondary pollution from wastewater/waste during the treatment process, requirement of large facilities for post-treatment, and increased installation costs. Therefore, it is necessary to enable practical application of simultaneous SOx and NOx treatment technologies to remove two or more contaminants in one process. The present study analyzes a technology capable of maintaining simultaneous treatment of SOx and NOx even at low temperatures due to the electrochemically generated strong oxidation of the wet-pulse complex system. This system also reduces unreacted residual gas and secondary products through the wet scrubbing process. It addresses common problems of the existing fuel gas treatment methods such as SDR, SCR, and activated carbon adsorption (i.e., low treatment efficiency, expensive maintenance cost, large installation area, and energy loss). Experiments were performed with varying variables such as pulse voltage, reaction temperature, chemicals and additives ratios, liquid/gas ratio, structure of the aeration cleaning nozzle, and gas inlet concentration. The performance of individual and complex processes using the wet-pulse discharge reaction were analyzed and compared.

복합교반법에 의한 금속복합재료의 제조공정에 따른 강화재의 분산성 검토 (Investigation of Reinforced Distribution in Fabrication Process of Metal Matrix Composites by Combined Stirring Process)

  • 이동건;강충길
    • Composites Research
    • /
    • 제14권5호
    • /
    • pp.1-11
    • /
    • 2001
  • 본 논문은 금속복합재료를 반용융상태로 재가열하여 Thixoforming을 하는데 필요한 소재를 제공하기 위한 장비 설계와 제조방법 등에 관한 내용을 소개하고 있다. 장비 설계에서 기지재내에 강화재가 균일하게 분산되도록 하기 위하여 강화재의 연속주입 방법과 강화재의 온도를 제어하는 방법을 소개하고 있다. 일정한 양의 강화재를 기지재료 내에 분산시키는 것은 균일 혼합을 위하여 필요한 기술이다. 또한 분산시 강화재의 수분제거를 위하여 강화재의 온도를 제어하면서 연속적으로 강제분산시키는 것은 균일분산을 위하여 필요하다. 기지재의 초정 $\alpha$의 크기가 강화재의 분산성에 크게 영향을 미치기 때문에 기지재의 초기 온도가 초정$\alpha$의 크기에 미치는 영향 등을 검토하여 복합재료 빌렛트의 제조조건에 이용하였다.

  • PDF

Monte Carlo Investigation of Dose Enhancement due to Gold Nanoparticle in Carbon-12, Helium-4, and Proton Beam Therapy

  • Sang Hee Ahn
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.114-120
    • /
    • 2022
  • Purpose: Particle beam therapy is advantageous over photon therapy. However, adequately delivering therapeutic doses to tumors near critical organs is difficult. Nanoparticle-aided radiation therapy can be used to alleviate this problem, wherein nanoparticles can passively accumulate at higher concentrations in the tumor tissue compared to the surrounding normal tissue. In this study, we investigate the dose enhancement effect due to gold nanoparticle (GNP) when Carbon-12, He-4, and proton beams are irradiated on GNP. Methods: First, monoenergetic Carbon-12 and He-4 ion beams of energy of 283.33 MeV/u and 150 MeV/u, respectively, and a proton beam of energy of 150 MeV were irradiated on a water phantom of dimensions 30 cm×30 cm×30 cm. Subsequently, the secondary-particle information generated near the Bragg peak was recorded in a phase-space (phsp) file. Second, the obtained phsp file was scaled down to a nanometer scale to irradiate GNP of diameter 50 nm located at the center of a 4 ㎛×4 ㎛×4 ㎛ water phantom. The dose enhancement ratio (DER) was calculated in intervals of 1 nm from the GNP surface. Results: The DER of GNP computed at 1 nm from the GNP surface was 4.70, 4.86, and 4.89 for Carbon-12, He-4, and proton beams, respectively; the DER decreased rapidly with increasing distance from the GNP surface. Conclusions: The results indicated that GNP can be used as radiosensitizers in particle beam therapy. Furthermore, the dose enhancement effect of the GNP absorbed by tumor cells can aid in delivering higher therapeutic doses.