• Title/Summary/Keyword: secondary fluid

Search Result 446, Processing Time 0.033 seconds

Verification Experiment of a Ground Source Multi-heat Pump at Cooling Mode (지열원 물대공기 멀티 히트펌프의 냉방 운전 특성에 관한 실증 연구)

  • Choi, Jong-Min;Kang, Shin-Hyung;Choi, Jae-Ho;Lim, Hyo-Jae;Moon, Je-Myung;Kwon, Young-Seok;Kwon, Hyung-Jin;Kim, Rock-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.297-304
    • /
    • 2009
  • The aim of this study is to investigate the cooling performance of ground source multi-heat pump systems with a vertical single U-tube GLHX(U-tube system) and a vertical double tube GLHX(double tube system), which were installed in a school building located in Cheonan. All systems were operated in a part load conditions for all day, and the maximum COP of the single U-tube system and the double tube system were 6.2 and 5.2 at cooling mode, respectively. The double tube GLHX designed by the GLHEPRO, commercial program, was estimated to have the same performance as the U-tube GLHX, because the inlet temperatures of each outdoor unit heat exchanger for the former was similar to the latter. However, it is needed to prove the long tenn performance. It is suggested that the new algorithms to control the flow rate of secondary fluid for GLHX according to load variation have to be developed in order to enhance the performance of the system.

Verification experiment of a ground source multi-heat pump at cooling mode (지열원 시스템 히트펌프의 냉방 성능 특성에 관한 실증 연구)

  • Lim, Hyo-Jae;Kang, Shin-Hyung;Choi, Jae-Ho;Choi, Jong-Min;Moon, Je-Myung;Kwon, Young-Seok;Kwon, Hyung-Jin;Kim, Rock-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.21-26
    • /
    • 2008
  • Recently, small and medium-sized buildings have employed a multi-heat pump. The major benefits of the multi-heat pump over a conventional system are that it is easier system to maintain along with a diversification of facility use, and high comfortability. The performance of multi-heat pump systems can be enhanced by using geothermal energy instead of air source energy. This paper describes the multi-heat pumps applied in an ground source heat pump system for an actual building. The performance of a ground source multi-heat pump installed in the field was investigated in cooling mode. The maximum COP of the systems with single U-tube and double tube ground loop heat exchangers were 6.6 and 6.0, respectively. It is suggested that the new algorithms to control the flow rate of secondary fluid for ground loop heat exchanger have to be developed in order to enhance the performance of the system.

  • PDF

A Case of Ovarian Hyperstimulation Syndrome with Massive Pleural Effusion (다량의 흉수를 동반한 난소 과자극 증후군 1례)

  • Park, Hyeong-Kwan;Kim, Yu-Il;Hwang, Jun-Hwa;Jang, Il-Gweon;Kim, Yung-Chul;Lee, Yu-Il;Park, Kyung-Ok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.684-691
    • /
    • 1997
  • 1be ovarian hyperstimulation syndrome is a rare but serious complication of ovulation induction therapy with gonadotropin. The clinical manifestations are generalized edema, ascites with pleural effusion and may become life-threatening in severe cases. The pathophysiology is still unknown, therefore, the treatment should be symptomatic and conservative. We report a case of severe OHSS with massive right pleural effusion in excess of ten liters after human menopausal gonadotropin therapy because of secondary infertility. Fluid and electrolyte imbalances were corrected and albumin was administered. A right chest tube was placed for a total of sixteen days, draining eleven liters of pleural effusion totally, resulting a dramatic decrease of pleural effusion and improvement of symptoms.

  • PDF

A Case of Pulmonary Alveolar Proteinosis Associated With Silicosis (진폐와 병발된 폐포단백증 1예)

  • Chi, Dong-Han;Kim, Hyun-Suk;Jeon, Jeong-Bae;Ryu, Jeong-Seon;Kwak, Seung-Min;Lee, Hong-Lyeol;Cho, Chul-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.437-443
    • /
    • 1998
  • Pulmonary alveolar proteinosis is characterized by the accumulation of PAS positive lipoproteinaceous or amorphous proteinaceous material in the alveolar space with spared delicate septal architecture of the lung interstitium and impaired gas exchange of alveoli. We experienced a case of secondary pulmonary alveolar proteinosis in a 41 year old male patient who have occupational history of engagement as a mason over 4year. He compalined exertional dyspnea and chest discomfort, and presented fine inspiratory crackle at both lower lung field, numerous fine nodular denisties in both lung field with peripheral sparing. Light microscopic finding of lung tissue obtained by transbronchiallung biopsy revealed homogenous eosinophilic colloid-like luminal content in the alveolar space, and electron microscopy of bronchoalveolar lavage fluid concentrate showed electron-dense multilamellated structures. To treat the disease, we tried whole lung lavage of right lung with isotonic saline under general anesthesia. After whole lung lavage of right lung, he showed markid improvement of symptom and partial improvement of chest X-ray findings. The patient has been followed for 12 month until now, with no evidence of aggravation.

  • PDF

Flow Simulation of Simulant Gel Propellant with $Al_2O_3$ Nano Particles in A U-Type Duct (U-자형 덕트에서의 $Al_2O_3$ 나노 입자를 포함한 모사 Gel 추진제의 유동 특성 수치해석)

  • Oh, Jeong-Su;Park, Ji-Hoon;Jang, Seok-Pil;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.377-382
    • /
    • 2010
  • The Present study uses non-Newtonian simulant gel propellant mixed by Water, Carbopol 941, and NaOH solution in order to analyze the gel propellant flow behavior. Rheological data have been measured and obtained prior to the analysis of flow characteristics where water-gel propellant as well as water-gel propellant with $Al_2O_3$ nano particles are both used. The critical Dean number were examined by numerical simulation of gel propellant in the U-shape duct flow. It is found that though gel-nano propellants have higher apparent viscosity, the critical Dean number did not showed notable difference with respect to the water-gel propellant. It is believe that this is due to the fact that the power law index of both propellants have close value, as was demonstrated by Fellouah et al.[1]

  • PDF

Pulmonary artery rupture due to bacterial endocarditis complicated by patent ductus arteriosus. (동맥관개존증에 합병한 심내막염에 의한 폐동맥파열 실험 1례)

  • 조순걸
    • Journal of Chest Surgery
    • /
    • v.18 no.4
    • /
    • pp.537-541
    • /
    • 1985
  • Recently, we met a 12 year old female patient who suffered from bacterial endocarditis and pericarditis which were complicated by patent ductus arteriosus. She was admitted to our hospital because of dyspnea, fever, headache, and generalized ache for 10 days. The initial diagnosis was bacterial endocarditis and pericarditis complicated by patent ductus arteriosus and congestive heart failure. At first, we tried to treat the patient medically with digitalis, diuretics, and massive antibiotics. On echocardiography large amount of pericardial fluid was accumulated mainly right anterior aspect and also noted a large vegetation at pulmonary valve area. With vigorous medical treatment including repeated pericardiocentesis, the patient showed no improvement. So we decided to perform pericardiectomy for elimination of the most probable septic focus. On operation, we encountered an unpredicted event, the pericardium was thickened, distended, and its surface showed pulsating which meant connecting to systemic circulation. We decided to close the operative wound and reoperate her under cardiopulmonary bypass later. On the next day, we operated her under cardiopulmonary bypass later. On the next day we operated her under cardiopulmonary bypass. The operative findings were ruptured main pulmonary artery about 1.5cm in diameter on its ventral portion, the blood from the ruptured main pulmonary artery was filled up the localized pericardial sac due to previous pericarditis. Through the ruptured main pulmonary artery, we also found 0.5cm diametered patent ductus arteriosus. With the aid of partial cardiopulmonary bypass and inserting 24F ballooned Foley catheter at aorta, pericardiectomy was performed first. After completion of the pericardiectomy, total cardiopulmonary bypass was established. With minimum pump flow [0.3L/min/m2] the PDA was closed with two Teflon-felted 4-0 Prolene interrupted sutures. The ruptured main pulmonary artery was also closed using thickened pericardium with three Teflon-felted 4-0 Prolene interrupted sutures. The operation was successful and postoperative course was uneventful. She was discharged on the 16th POD. We report this case as a very rare secondary complication of bacterial endocarditis complicated by patent ductus arteriosus.

  • PDF

New Evaluation of Initial Growth Mechanisms of Hydroxyapatite on Self-assembled Collagen Nanofibrils by Using ToF-SIMS and AFM Techniques

  • Park, Young-Jae;Choi, Gyu-Jin;Lee, Tae-Geol;Lee, Won-Jong;Moon, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.397-397
    • /
    • 2010
  • Bone is considered as hierarchically organized biocomposites of organic (collagen) and inorganic (hydroxyapatite) materials. The precise structural dependence between hydroxyapatite (HAp, $Ca_{10}(PO_4)_6(OH)_2)$ crystals and collagen fibril is critical to unique characteristics of bone. To meet those conditions and obtain optimal properties, it is essential to understand and control the initial growth mechanisms of hydroxyapatite at the molecular level, such as other nano-structured materials. In this study, collagen fibrils were prepared by adsorbing native type I collagen molecules onto hydrophobic surface. Hydrophobicity was introduced on the Si wafer surface by using PECVD (plasma enhanced chemical vapor deposition) method and cyclohexane as a precursor. Biomimetic nucleation and growth of HAp on the self-assembled collagen nanofibrils were occurred through incubation of the sample in SBF (simulated body fluid). Chemical and morphological evolution of HAp nanocrystals was investigated by surface-sensitive analytical techniques such as ToF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry) and AFM (Atomic Force Microscopy) in the early growth stages (< 24 hrs). The very initial stages (< 12 hrs) of mineralization could be clearly demonstrated by ToF-SIMS chemical mapping of surface. In addition to ToF-SIMS and AFM measurement, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis were conducted to characterize the HAp layer in the late stages. This study is of great importance in the growth of real bone-like materials with a structure analogous to that of natural bones and the development of biomimetic nanomaterials.

  • PDF

An experimental study for the effect of rotational direction on the recovery rate of spilled oil using a belt skimmer (벨트식 유회수기의 회전방향이 유회수율에 미치는 영향에 관한 실험적 연구)

  • Song, Dong-Eop;Yun, Gyeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.679-690
    • /
    • 1997
  • Oil spill over the sea and the river become a serious problem in these days. Two different approaches are used to clean up the spilled oil by means of chemical dispersion and mechanical devices. If it is possible, removing spilled oil using mechanical devices are highly desirable in order not to worry about the secondary contamination from chemical treatment. One of the major unsolved problems using mechanical devices has been the recovery of highly viscous oil spill. So, the systematic experimental data for treating very viscous oil are still wanting. In the present study a series of experiments were carried out to study the effect of the rotational direction of the belt skimmer on the rate of oil recovery using Bunker C oil. Three different situations, namely, upward, downward and up-and-downward pickup rate have been investigated for variable belt speed. The results showed that the rate of oil recovery for downward pickup was much higher than that for upward pickup. The major mechanism to recover the oil using a belt skimmer has been confirmed that oil sticks to the belt surface while moving to the water rather than moving upward. For the removal of spilled oil the optimal belt speed under the present experimental conditions was found to be about 200 ~ 270 mm/s just before the starvation started. The present experimental results would provide the basis for understanding the performance characteristics and physics of various types of skimmers.

The Effects of Inclined Foil Shape on Flow Characteristics in Air Foil Thrust Bearing Using CFD (에어 포일 스러스트 베어링의 탑포일 경사면 형상이 유동특성에 미치는 영향에 대한 수치해석 연구)

  • Baek, GeonWoong;Joo, Won-Gu;Mun, Hyeong Wook;Hwang, Sunghyen;Jeong, Sung-Yun;Park, Jung-Koo
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.117-124
    • /
    • 2021
  • In this study, we perform a 3D CFD conjugate analysis according to the shape of the foil ramp of the air foil thrust bearing, analyze the flow characteristics inside the bearing, and compare the results corresponding to the two shapes. Air has a lower viscosity than lubricating oil. Therefore, the thrust runner of the bearing must rotate at high speed to support the load. The gap between thrust runner and foil is significantly smaller than that of the oil bearing. Hence, it is crucial to analyze the complex flow characteristics inside the bearing to predict the complex flow inside the bearing and performance of the bearing. In addition, flow characteristics may appear differently depending on the ramp shape of the bearing foil, which may affect bearing performance. In this study, we numerically analyze the main flow path of air flowing into the bearing and the secondary flow path used for cooling the bearing using the commercial CFD software ANSYS CFX and compare the flow characteristics for straight and curved foil ramp shapes. Notably, there is a difference in the speed of the flowing air according to the shape of the ramp, which affects the bearing performance.

Effect on Flow Distortion of S-Duct by Boundary Layer Suction (경계층 흡입이 S-Duct의 유동 왜곡에 미치는 영향성 연구)

  • Baeg, Seungyong;Lee, Jihyeong;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • An intake of Aircraft becomes S-shaped geometry due to spatial limitation or procuring survivability. But curvature of the S-shaped geometry makes secondary flow or flow separation which is the cause of non-uniform pressure distribution. In this study, boundary layer suction is applied to RAE M 2129 S-Duct by attaching sub duct. Design variable is suction location and angle. A mass flow rate drawn out by suction at the sub duct outlet is constant over every model. A grid dependency test was conducted to verify validity of computation. The comparison among the CFD (Computation Fluid Dynamics), ARA experimental result, and ARA computation result of non-dimensional pressure distribution on the Port side and Starboard Side confirmed the validity of CFD. In this study, Distortion Coefficient was used for evaluating aerodynamic performance of S-Duct. The analysis, which was about flow separation, vortex, mass flow rate distribution, and pressure distribution were also investigated. Maximum 26.14% reduction in Distortion Coefficient was verified.