• Title/Summary/Keyword: secondary field

Search Result 1,121, Processing Time 0.029 seconds

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.

Actively Controlled Sound Field of Upper Sections Attached to Noise Barriers (방음벽 상단의 음장에 관한 능동제어)

  • Koh, Hyo-In;Lee, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.891-896
    • /
    • 2005
  • On the basis of theoretical studies on the effect of the cylinders attached to semi-infinite screens, the tangential sound power-transport parallel to the surface of the attached cylinder is minimized by means of a secondary sound field, which is generated from a part of the attached cylinder. The numerical study shows the possibility of deflecting the incident sound by minimizing the sound field of the upper sections. The acoustical shadow region was more pronounced in both near- and far-field compared to the passive case with rigid surface, i.e. without active control. For a relatively wide frequency range it was possible to enhance shielding effects only with few secondary sources and error microphones. In this paper effects of control parameters on the actively controlled sound field near the top edge of noise barriers are studied. Results of numerical study and model measurements are shown and discussed.

Optical Design of an Image-space Telecentric Two-mirror System for Wide-field Line Imaging

  • Lee, Jong-Ung;Kim, Youngsoo;Kim, Seo Hyun;Kim, Yeonsoo;Kim, Hyunsook
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.344-350
    • /
    • 2017
  • We present a new design approach and an example design for an image-space telecentric two-mirror system that has a fast f-number and a wide-field line image. The initial design of the telecentric mirror system is a conventional axially symmetric system, consisting of a flat primary mirror with fourth-order aspheric deformation and an oblate ellipsoidal secondary mirror to correct spherical aberration, coma, and field curvature. Even though in the optimized design the primary mirror is tilted, to avoid ray obstruction by the secondary mirror, the image-space telecentric two-mirror system shows quite good imaging performance, for a line imager.

Modulator of surface plasmon polariton based cycle branch graphene waveguide

  • Zhu, Jun;Xu, Zhengjie;Xu, Wenju;Wei, Duqu
    • Carbon letters
    • /
    • v.25
    • /
    • pp.84-88
    • /
    • 2018
  • At present, an important research area is the search for materials that are compatible with CMOS technology and achieve a satisfactory response rate and modulation efficiency. A strong local field of graphene surface plasmon polariton (SPP) can increase the interaction between light and graphene, reduce device size, and facilitate the integration of materials with CMOS. In this study, we design a new modulator of SPP-based cycle branch graphene waveguide. The structure comprises a primary waveguide of graphene-$LiNbO_3$-graphene, and a secondary cycle branch waveguide is etched on the surface of $LiNbO_3$. Part of the incident light in the primary waveguide enters the secondary waveguide, thus leading to a phase difference with the primary waveguide as reflected at the end of the branch and interaction coupling to enhance output light intensity. Through feature analysis, we discover that the area of the secondary waveguide shows significant localized fields and SPPs. Moreover, the cycle branch graphene waveguide can realize gain compensation, reduce transmission loss, and increase transmission distance. Numerical simulations show that the minimum effective mode field area is about $0.0130{\lambda}^2$, the gain coefficient is about $700cm^{-1}$, and the quality factor can reach 150. The structure can realize the mode field limits of deep subwavelength and achieve a good comprehensive performance.

Simulation of Capacitively Coupled RF Plasma; Effect of Secondary Electron Emission - Formation of Electron Shock Wave

  • Park, Seung-Kyu;Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.31-37
    • /
    • 2009
  • This paper presents one and two dimensional simulation results with discontinuous features (shocks) of capacitively coupled rf plasmas. The model consists of the first two and three moments of the Boltzmann equation for the ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The local field and drift-diffusion approximations are not employed, and as a result the charged species conservation equations are hyperbolic in nature. Hyperbolic equations may develop discontinuous solutions even if their initial conditions are smooth. Indeed, in this work, secondary electron emission is shown to produce transient electron shock waves. These shocks form at the boundary between the cathodic sheath (CS) and the quasi-neutral (QN) bulk region. In the CS, the electrons emitted from the electrode are accelerated to supersonic velocities due to the large electric field. On the other hand, in the QN the electric field is not significant and electrons have small directed velocities. Therefore, at the transition between these regions, the electron fluid decelerates from a supersonic to a subsonic velocity in the direction of flow and a jump in the electron velocity develops. The presented numerical results are consistent with both experimental observations and kinetic simulations.

  • PDF

Negative Apparent Resistivity in Resistivity Method (전기비저항탐사에서 음의 겉보기 비저항)

  • Cho In-Ky;Kim Jung-Ho;Chung Seung-Hwan;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.199-205
    • /
    • 2002
  • In the resistivity method, the potential difference between two grounded electrodes is measured and this can be positive or negative. The apparent resistivity and the potential difference have the same polarity. Since the electric field is the gradient of the potential, the polarity of the potential difference depends on the direction of the electric field. If the direction of the vector connecting two grounded electrodes is the same to that of the electric field, the measured potential difference and the apparent resistivity become positive. If the opposite is the case, they become negative. In general, the primary electric field and the vector connecting two potential electrodes have the same direction in a surface resistivity method. In this case, the measured potential difference is always positive because the primary electric field is greater than the secondary field. Therefore, the apparent resistivity is always positive if noise is free and topography is flat. The secondary field component, however, can be greater than the primary field component along the vector connecting two potential electrodes in the cross-hole resistivity method. Furthermore, if the secondary electric field and the vector connecting two potential electrodes have an opposite direction, the apparent resistivity become negative. Consequently, the apparent resistivity may be negative in the region where the primary electric field component along the vector connecting two potential electrodes is very small.

Finite Element Analysis of Creep Crack Growth Behavior Including Primary Creep Rate (1차 크리프 속도를 고려한 크리프 균열 진전의 유한요소 해석)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1120-1128
    • /
    • 1999
  • An elastic-viscoplastic finite element analysis is performed to investigate detailed growth behavior of creep cracks and the numerical results are compared with experimental results. In Cr-Mo steel stress fields obtained from the crack growth method by mesh translation were compared with both cases that the secondary creep rate is only used as creep material property and the primary creep rate is included. Analytical stress fields, Riedel-Rice(RR) field, Hart-Hui-Riedel(HR) field and Prime(named in here) field, and the results obtained by numerical method were evaluated in details. Time vs. stress at crack tip was showed and crack tip stress fields were plotted. These results were compared with analytical stress fields. There is no difference of stress distribution at remote region between the case of 1st creep rate+2nd creep rate and the case of 2nd creep rate only. In case of slow velocity of crack growth, the effect of 1st creep rate is larger than the one of fast crack growth rate. Stress fields at crack tip region we, in order, Prime field, HR field and RR field from crack tip.

Optical Design of an Off-Axial-Field Two-Mirror System with a Displaced Stop and a Secondary Mirror (조리개와 제 2거울이 횡이동된 비축시야 2반사 광학계 설계)

  • Nam, Ji-Woo;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.304-313
    • /
    • 2020
  • By using an off-axial field with an inverse Cassegrain system where the aperture stop is at the secondary mirror, the two-mirror system can be used for a wide-field objective. However, aberration corrections in conventional two-mirror systems are limited because the design parameters are too small. In this study, we present a new improved design of the off-axial-field two-mirror system. The new design has an independently displaced aperture stop and a secondary mirror. The new design parameters yield more improvement in correction for 5th-order coma and astigmatism, and better aberration balancing for the whole off-axial field. The spot sizes of the new design system are reduced to half of those for a conventional reference design, and the improvement effects are shown for the whole field evenly.

Actively controlled sound field of upper sections attached to noise harriers (방음벽 상단 소음의 회절에 관한 능동제어)

  • Koh, Hyo-In;Moser, Michael
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.482-485
    • /
    • 2004
  • On the basis of theoretical studies on the effect of the cylinders attached to semi-infinite screens, the tangential sound power-transport parallel to the surface of the attached cylinder is minimized by means of a secondary sound field, which is generated from a part of the attached cylinder. The numerical study shows the possibility of deflecting the incident sound by minimizing the acoustic surface impedance of the upper sections. The acoustical shadow region was more pronounced in both near- and far-field compared to the passive case with rigid surface, i.e. without active control. For a relatively wide frequency range it was possible to enhance shielding effects only with few secondary sources and error microphones. In this paper effects of some control parameters on the actively controlled sound field near the top edge of noise barriers are studied. Results of numerical study and model measurements are shown and discussed.

  • PDF

Study on Heat Transfer around a Circular Jet Ejected into a Supersonic Flow (초음속 유동내에 분사되는 원형 제트 주위에서의 열전달 연구)

  • Yi, Jong-Ju;Yu, Man-Sun;Cho, Hyung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.353-356
    • /
    • 2006
  • Convective heat transfer coefficient was measured around a secondary jet ejected into the supersonic flow field. Wall temperature distribution was measured on the surface, which the constant heat flux condition is applied. According to jet to freestream momentum ratio, the secondary flow was penetrated into the supersonic flow field. During the test, two dimensional thermal image of a wall temperature is taken by an infra-red camera. Experiments were performed under the testing condition of freestream Mach number of about 3, stagnation pressure of 630 kPa and Reynolds number of $3.0{\times}10^6$.

  • PDF