• Title/Summary/Keyword: secondary cooling system

Search Result 81, Processing Time 0.023 seconds

Enhancement of Turbulent Heat Transfer of the Cooling System in Nuclear Reactor by Large Scale Vortex Generation

  • Chun, Kun-Ho;Park, Jong-Seok;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2001
  • Experimental and computational studies were carried out to investigate the turbulent heat transfer enhancement of the cooling system in nuclear reactor by large scale vortex generation. The large scale vortex motion was generated by rearranging the inclination angels of mixing vanes to the coordinate direction. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity concept based on $\kappa{-}\varepsilon$ model was employed to calculate the turbulent heat and momentum transfers in the subchannel. The turbulences generated by split mixing vanes has small length scales so that they maintain only about $10D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex motions continue longer and remain up to $25D_H$ after the spacer grid.

  • PDF

Turbulent Enhancement of the Cooling System of Nuclear Reactor by Large Scale Vortex Generation in a Nuclear Fuel Bundles (원자로 연료봉내 대형 와유동에 의한 원자로 냉각제 시스템의 난류 증진)

  • 전건호;박종석;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.1004-1011
    • /
    • 2000
  • Experimental and computational studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity heat flux model and $k-varepsilon$ model were employed to analyze the turbulent heat and fluid flows in the subchannel. The turbulence generated by split mixing vanes has small length scales so that they maintain only about $10 D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up to $25 D_H$after the spacer gird.

  • PDF

Part-load Performance of a Screw Chiller with Economizer using R22 and R407C

  • Chang, Young-Soo;Kim, Young-Il;Lee, Yong-Chul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • Screw compressor chillers are widely used in refrigeration for capacity over 30 RT. In general, chillers operate under part-load conditions during most of the time. Therefore, information on the characteristics of part-load is very important for better chiller performance and energy economy. In this study, performance tests of screw chiller with economizer using R22 and R407C under part-load conditions have been performed for various secondary fluid temperatures. Adoption of an economizer system increased the cooling capacity and improved COP except for lower part-load condition when economizer volume ratio is 1.01. For the same cooling capacity condition at part-load, COP's of both non-economizer and economizer system showed similar values.

Part-Load Performance Test of a Screw Chiller with Economizer using R22 and R407C (이코노마이저를 채용한 스크류 냉동기에서 R22와 R407C의 부분부하 성능실험)

  • 장영수;이용철;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.902-909
    • /
    • 2003
  • Screw compressor type chillers are widely used in refrigeration for capacity over 30 RT. In general, chillers operate under part-load conditions. Therefore, information on characteristics at part-load is very important in view of chiller performance and energy economy. In this study, performance tests of part-load and economizer system using R22 and R407C have been performed for various secondary fluid temperatures. Adoption of an economizer system increased the cooling capacity and improved COP except for lower part-load condition when injection volume ratio is 1.01. For the same cooling capacity condition at part-load, COP of both non-economizer and economizer system showed similar values.

THE DESIGN AND ANALYSIS OF EXHAUST EJECTOR FOR TURBOSHAFT ENGINE (터보샤프트 엔진의 배기 이젝터 설계 및 유동해석)

  • Lee, C.H.;Kim, C.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.97-100
    • /
    • 2006
  • An ejector is designed for the purpose of engine bay cooling and exhaust gas cooling. The primary flow of the ejector is the exhaust gas of the turboshaft engine. The mass flow of secondary flow is calculated by using the approximate analytic equation. For the purpose of verification of approximate method, comparison is made with the results of Navier-Stokes turbulent flow solution. According to the results of CFD, the mixing of two flows is incomplete due to the short length of mixing duct.

  • PDF

Sensitivity analysis of melt spinning process by frequency response

  • Hyun, Jae-Chun;Jung, Hyun-Wook;Lee, Joo-Sung
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • The sensitivity of the final filament to the ongoing sinusoidal disturbances has been Investigated in the viscoelastic spinning using frequency response method. Amplification ratios or gains of the spinline cross-sectional area at the take-up to any disturbances show resonant peaks along the frequency regime, where the frequencies at theme points directly correspond to the imaginary parts of the successive leading eigenvalues from the linear stability analysis. As shown in Jung et al. (1999) and Lee et al (2001), the sensitivity results on the effect of various process conditions such as spinline cooling and fluid viscoelasticity, obtained by dynamic transient simulation have been corroborated in this study. That is, increasing spinline cooling makes the system less sensitive to disturbances, thus stabilizes the spinning. Also, an increasing viscoelasticity for extension-thickening fluids decreases the sensitivity of the spinning. i.e., stabilizing the system, where, as it increases the sensitivity of the spinning of extension-thinning fluids. Furthermore, it has been found in the present study that the inertia force as one of secondary forces causes the system to be more stabile or less sensitive to process disturbances.

Theoretical Heat Flow Analysis and Vibration Characteristics During Transportation of PCS(Power Conversion System) for Reliability (전력변환장치 캐비넷에서의 내부발열 개선을 위한 열유동 분석 및 유통안전성 향상을 위한 진동특성 분석)

  • Joo, Minjung;Suh, Sang Uk;Oh, Jae Young;Jung, Hyun-Mo;Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • PCS needs to freely switch AC and DC to connect the battery, external AC loads and renewable energy in both directions for energy efficiency. Whenever converting happens, power loss inevitably occurs. Minimization of the power loss to save electricity and convert it for usage is a very critical function in PCS. PCS plays an important role in the ESS(Energy Storage System) but the importance of stabilizing semiconductors on PCB(Printed Circuit Board) should be empathized with a risk of failure such as a fire explosion. In this study, the temperature variation inside PCS was reviewed by cooling fan on top of PCS, and the vibration characteristics of PCS were analyzed during truck transportation for reliability of the product. In most cases, a cooling fan is mounted to control the inner temperature at the upper part of the PCS and components generating the heat placed on the internal aluminum cooling plate to apply the primary cooling and the secondary cooling system with inlet fans for the external air. Results of CFD showed slightly lack of circulating capacity but simulated temperatures were durable for components. The resonance points of PCS were various due to the complexity of components. Although they were less than 40 Hz which mostly occurs breakage, it was analyzed that the vibration displacement in the resonance frequency band was very insufficient. As a result of random-vibration simulation, the lower part was analyzed as the stress-concentrated point but no breakage was shown. The steel sheet could be stable for now, but for long-term domestic transportation, structural coupling may occur due to accumulation of fatigue strength. After the test completed, output voltage of the product had lost so that extra packaging such as bubble wrap should be considered.

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

Verification Experiment of a Ground Source Multi-heat Pump at Cooling Mode (지열원 물대공기 멀티 히트펌프의 냉방 운전 특성에 관한 실증 연구)

  • Choi, Jong-Min;Kang, Shin-Hyung;Choi, Jae-Ho;Lim, Hyo-Jae;Moon, Je-Myung;Kwon, Young-Seok;Kwon, Hyung-Jin;Kim, Rock-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.297-304
    • /
    • 2009
  • The aim of this study is to investigate the cooling performance of ground source multi-heat pump systems with a vertical single U-tube GLHX(U-tube system) and a vertical double tube GLHX(double tube system), which were installed in a school building located in Cheonan. All systems were operated in a part load conditions for all day, and the maximum COP of the single U-tube system and the double tube system were 6.2 and 5.2 at cooling mode, respectively. The double tube GLHX designed by the GLHEPRO, commercial program, was estimated to have the same performance as the U-tube GLHX, because the inlet temperatures of each outdoor unit heat exchanger for the former was similar to the latter. However, it is needed to prove the long tenn performance. It is suggested that the new algorithms to control the flow rate of secondary fluid for GLHX according to load variation have to be developed in order to enhance the performance of the system.

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery (저온 폐열 회수용 진동형 히트 파이프 열교환기의 성능 평가에 관한 연구)

  • 안영태;이욱현;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.368-376
    • /
    • 2001
  • Performance of heat exchanger was evaluated to heat exchanger using oscillating heat pipe for waste heat recovery of low temperature. Oscillating heat pipe used in this study was formed to the closed loop of serpentine shapes using copper tubes. Heat exchanger was formed to shell and tube type and composed of low finned tube. R-22 and R-141b were used to the working fluids of tube side and their charging ratio was 40%. And, water was used to the working fluid of shell side. As the experimental parameters, the inlet temperature difference of heating and cooling part of secondary fluid and the mass velocity of secondary fluid were used. The mass velocity of secondary fluid was changed from 90 kg/$m^2s\; to\;190 kg/m^2$s from the experimental results, heat recovery rate was linearly increased to the increment of the mass velocity of secondary fluid and the inlet temperature difference of secondary fluid. Finally, the performance of heat exchanger was evaluated by using $\varepsilon$-NTU method. It was found that NTU was about 1.5 when effectiveness was decided to 80%.

  • PDF