• Title/Summary/Keyword: secondary cell

Search Result 991, Processing Time 0.028 seconds

Electrochemical Characteristics of Hybrid Cell Consisting of Li Secondary Battery and Supercapacitor (리튬이차전지와 슈퍼커패시터로 구성된 하이브리드 셀의 전기화학적 특성)

  • KIM1, SANGGIL;GIL, BOMIN;HWANG, GABJIN;RYU, CHEOLHWI
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2019
  • This study investigates the electrochemical characteristics of the hybrid cell that combined the advantageous characteristics of Li secondary battery and supercapacitor, high energy density and high power density, respectively. Electrochemical behaviors of the hybrid cell was characterized by charge/discharge, cycle and impedance tests. The hybrid cell using Li secondary battery and supercapacitor had better discharge capacity and cycle performance than that of using Li secondary battery only. Proper design of such a hybrid cell system is expected to result in substantial benefits to the well being of the Li secondary battery. The hybrid cell involving Li secondary battery for high energy density and supercapacitor for high power density may be the possible solution for future energy storage system.

Analysis of Operating Time of Li-polymer Secondary Cell with or Without Flyback Converter Active Balancing BMS (Flyback Converter Active Balancing BMS 적용 유·무에 따른 리튬폴리머 이차전지 가용시간 분석)

  • Kim, Young-Pil;Choi, Chul-Hyung;Ko, Seok-Cheol;Kim, Si-Kyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.786-791
    • /
    • 2017
  • In this paper, the run time of Li-polymer secondary cell with and without Active Balancing BMS is analyzed. The Active Balancing System using Flyback Converter with two-way power control facility, his designed for optimal characteristics of balancing. The run time of Li-polymer secondary cell is drastically increased employing the Flyback Convert Active Balancing BMS. The run time performance of Li-polymer secondary cell with or without Flyback Converter Active Balancing BMS is analyzed with the discharging and charging experiment of Li-polymer secondary cell.

Micromorphological Characteristics of Frost Rings in the Secondary Xylem of Pinus radiata

  • Lee, Kwang Ho;Kim, Jong Sik;Singh, Adya P.;Kim, Yoon Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Frost ring formed in the secondary xylem of Pinus radiata was examined using various microscopic techniques. Cell walls in a frost ring were poorly developed, lacking in the proportion of wall components. Formation of secondary cell wall was imperfect and thickness of secondary wall was varied. Cytochemical examinations provided the evidence that the synthesis of structural polysaccharides and lignin was inhibited, resulting in the malformation of secondary cell walls. Judging by the highly irregular nature of the cell wall, it appears that cellulosic/hemicellulosic framework was affected and the template for lignification by frost.

Cell Balancing Method in Flyback Converter without Cell Selection Switch of Multi-Winding Transformer

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.367-376
    • /
    • 2016
  • This paper presents a cell balancing method for a single switch flyback converter with a multi-winding transformer. The conventional method using a flyback converter with a multi-winding transformer is simple and easy to control, but the voltage of each secondary winding coil might be non-uniform because of the unequal effective turn-ratio. In particular, it is difficult to control the non-uniform effect using turn-ratios because secondary coil has a limited number of turns. The non-uniform secondary voltages disturb the cell balancing procedure and induce an unbalance in cell voltages. Individual cell control by adding a switch for each cell can reduce the undesirable effect. However, the circuit becomes bulky, resulting in additional loss. The proposed method here uses the conventional flyback converter with an adjustment made to the output filters of the cells, instead of the additional switch. The magnitude of voltage applied to a particular cell can be reduced or increased according to the adjusted filter and the selected switching frequency. An analysis of the conventional converter configuration and the filter design method reveals the possibility of adequate cell balancing control without any additional switch on the secondary side.

Present Status and Prospects of in vitro Production of Secondary Metabolites from Plant sin China

  • Chen, Xian-Ya;Xu, Zhi-Hong
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.40-56
    • /
    • 1995
  • During the past two decades, China has seen her great progress in plant biotechnology. Since the Chinese market of herb medicine is huge, while the plant resources are shrinking, particular emphasis has been placed in plant tissue and cell cultures of medicinal plants, this includes fast propagation, protoplast isolation and regeneration, cell suspension cultures and large scale fermentation. To optimize culture conditions for producing secondary compounds in vitro, various media, additives and elicitors have been tested. Successful examples of large scale culture for the secondary metabolite biosynthesis are quite limited : Lithospermum ery throrhizon and Arnebia euchroma for shikonin derivatives, Panax ginseng, P. notoginseng, P. quinquefolium for saponins, and a few other medicinal plants. Recent development of genetic transformation systems of plant cells offered a new approach to in vitro production of secondary compounds. Hairy root induction and cultures, by using Ri-plasmid, have been reported from a number of medicinal plant species, such as Artemisia annua that produces little artemisinin in normal cultured cells, and from Glycyrrhiza uralensis. In the coming five years, Chinese scientists will continue their work on large scale cell cultures of a few of selected plant species, including Taxus spp. and A. annua, for the production of secondary metabolites with medicinal interests, one or two groups of scientists will be engaged in molecular cloning of the key enzymes in plant secondary metabolism.

  • PDF

The Study on Thermal Modeling and Charge Capacity Estimation for Lithium Secondary Battery (리튬 2차 전지의 열적 모델링 및 용량 예측에 관한 연구)

  • Kim, Jong-Won;Cho, Hyun-Chan;Kim, Kwang-Sun;Jo, Jang-Gun;Lee, Jung-Su;Hu, Bin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.53-57
    • /
    • 2007
  • In this paper, the intelligent estimation algorithm is developed for residual quantity estimate of lithium secondary cell and we suggest the control algorithm to get battery SOC through thermal modeling of electric cell. Lithium secondary cell gives cycle life, charge characteristic, discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc. Therefore, we make an accurate estimate of the capacity of battery according to thermal modeling to know the capacity of electric cell that is decreased by various special quality of lithium secondary cell. And we show effectiveness through comparison of value as result that use simulation and fuzzy logic.

  • PDF

A Study on the Recognition about Cell and Gene Domain to be Taught in Elementary, Secondary Schools by Secondary Biology Teacher (초.중등학교의 세포, 유전 영역에서 지도해야 할 개념에 대한 중등 생물 교사의 인식 조사)

  • Jeong, Jae-Hoon;Yoon, Jung-Ju;Son, Jong-Kyung;Lee, Tae-Sang;Kim, Young-Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.5
    • /
    • pp.636-646
    • /
    • 2010
  • The purpose of this study is to confirm secondary biology teachers' recognition about cell and gene concepts that should be taught in biology according to each school level and to classify the concepts into essential, optional and non-essential ones. We developed a questionnaire in consultation with 5 biology professors after selecting some biological concepts from some data about the recommendations of BSCS, biology, study for the connection with biological contents in each school level. This survey was conducted to biological teachers in secondary schools (146 individuals) from all over Korea for studying the concepts of the cell and gene in elementary and secondary schools. The results of this study revealed the following: The number of essential concepts in the cell and gene domain increases as the school levels go up. Moreover, secondary biology teacher recognized that there must be much more cell and gene concepts that should be taught in elementary and secondary schools compared to those suggested in the science curriculum and BSCS' recommendation.

The Impeditive Properties and Charge/Discharge of Positive Active Material $LiMnO_2$ (정극 활물질 LiMnO2 충.방전과 임피던스 특성)

  • Wi, Seong-Dong;Kim, Jong-Ok;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.299-305
    • /
    • 2003
  • The battery industries have been developed to the implementation of lithium ion secondary cell from the cell of Ni/Cd and Ni/MH in the past to be asked of an age of high technology from low technology. Also in resent the polymeric cell to get a good high function with an age of new advanced information system is changed from the 21 century to the secondary batteries society. The properties of lithium secondary batteries have the high energy density, the long cycle time, the low self discharge area and the high active voltage. The wanted properties of secondary batteries for the motion of an apparatuses of industries of an high skill age have a small type trend of the energy density and it is become with a strong asking of the industrial society market about the storable medium of the convenience and new power energy. The electrochemical properties is researched for the cell to be synthesised and crystallized the positive active material LiMnO2 of the secondary cell at 9250C to get a new improved data of the electric discharge for that the capacitance of the LiMnO2 thin film that is improving and researching with the properties and a merit and demerit in the this kind of asking.

  • PDF

Humidity Effect on the Hydrogen Re-circulation Ejector Performance (고습의 흡입 유체일 때 이젝터의 성능 변화)

  • JeGal, Seung;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2589-2593
    • /
    • 2008
  • In a fuel cell vehicle using polymer electrolyte membrane fuel cell(PEMFC), hydrogen is over-supplied to gain higher stack efficiency. So it is needed considering fuel efficiency to re-circulate hydrogen which is not reacted in stack. And to re-circulate hydrogen, a blower or an ejector is used. Ejector re-circulation system has several merits compared with blower system, for example no parasite energy, simple structure and no lubrication system. But the secondary flow of an ejector in fuel cell vehicle, has high humidity because of crossover problem in stack. Therefore in this paper, ejector is designed by 1-D modeling and CFD with the primary and secondary flow of hydrogen. And the ejector which has the primary and secondary flow of air, is designed to have the same Reynolds number and Mach number at the nozzle exit as the hydrogen ejector's. And this air ejector is tested while the humidity of the secondary flow is varied.

  • PDF

Bioprocess Considerations for Production of Secondary Metabolites by Plant Cell Suspension Cultures

  • Chattopadhyay, Saurabh;Farkya, Sunita;Srivastava, Ashok K.;Bisaria, Virendra
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.138-149
    • /
    • 2002
  • Plant cell culture provides a viable alternative over whole plant cultivation for the production of secondary metabolites. In order to successfully cultivate the plant cells at large scale, several engineering parameters such as, cell aggregation, mixing, aeration, and shear sensitivity are taken into account for selection of a suitable bioreactor. The media ingredients, their concentrations and the environmental factors are optimized for maximal synthesis of a desired metabolite. Increased productivity in a bioreactor can be achieved by selection of a proper cultivation strategy (batch, fed-batch, two-stage etc.), feeding of metabolic precursors and extraction of intracellular metabolites. Proper understanding and rigorous analysis of these parameters would pave the way towards the successful commercialization of plant cell bioprocesses.