• Title/Summary/Keyword: secondary carbides

Search Result 21, Processing Time 0.029 seconds

The Effect of Ausforming Process on Mechanical Properties of Ultrahigh Strength Secondary Hardening Martensitic Steels (극초고강도 이차경화형 마르텐사이트강의 기계적성질에 미치는 오스포밍 공정의 영향)

  • Kim, S.B.;Won, Y.J.;Song, Y.B.;Cho, K.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.179-184
    • /
    • 2021
  • Two types of secondary hardening martensitic steels, 10Co-14Ni and 6Co-5Ni, were produced by vacuum induction melting to investigate the effect of ausforming process on mechanical properties. According to the results of present study, the alloy samples ausformed at low temperature indicated a rather low hardness level in overall aging time despite the refinement of martensite lath width. As the result can closely be related with the presence of primary carbides precipitated within the initial austenite matrix, we confirmed that, in ultrahigh strength secondary hardening martensitic alloy steels, the ausforming process can rather limit the degree of secondary hardening during the subsequent aging treatment.

The Effect of Destabilization Heat Treatment on the Carbide and Matrix Microstructures of 3%C-18%Cr-1%Mo-2%Ni-1%Mn High Chromium Cast Iron (3%C-18%Cr-1%Mo-2%Ni-1%Mn 고크롬백주철의 탄화물 및 기지조직에 미치는 불안정화열처리의 영향)

  • Yu, Sung-Kon
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.581-586
    • /
    • 2003
  • 3%C-18%Cr-1%Mo-2%Ni-1%Mn high chromium cast iron was casted and destabilized at temperatures of 900, 1000 and $1100^{\circ}C$ for 1, 2, 4 and 8hr under $N_2$atmosphere to observe the effect of destabilization temperature and time on the carbide and matrix structures. In as-cast condition, the microstructure consisted of $M_{ 7}$$C_3$ carbides and matrix structures which were composed of 91.50% austenite and 8.50% martensite. Numerous fine secondary carbides were observed in the specimens destabilized at $900^{\circ}C$ for 1, 2, 4 and 8hr. But, the number of secondary carbides were much reduced with the increased destabilization temperature. More austenite was formed in the matrix with the higher destabilization temperature. The amounts of austenite in the matrix were 4.23% at $900^{\circ}C$, 29.68% at $1000^{\circ}C$ and 66.51% at$ 1100^{\circ}C$, respectively. However, the effect of destabilization time on the secondary carbide and matrix was very weak compared with that of destabilization temperature. The ranges of the amount of austenite in the matrix from 1hr to 8hr destabilization heat treatment were: 3.95%-4.35% at $900^{\circ}C$, 28.89%-30.15% at $1000^{\circ}C$ and 65.13%-67.12% at $1100^{\circ}C$, respectively. The variation ranges were very narrow. The equilibrium concentration of C and Cr in austenite was already reached within 1hr during destabilization heat treatment. After an attainment of the equilibrium concentration of C and Cr in austenite, no more secondary carbide was precipitated from the matrix.

Effect of Austenitizing Temperature on Secondary Hardening and Impact Toughness in P/M High Speed Vanadium Steel (바나듐 분말 고속도공구강의 이차경화 및 충격인성에 미치는 오스테니타이징 온도의 영향)

  • Moon, H.K.;Yang, H.R.;Cho, K.S.;Lee, K.B.;Kwon, H.
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.477-481
    • /
    • 2008
  • The secondary hardening and fracture behavior in P/M high speed steels bearing V content of 9 to 10 wt% have been investigated in terms of austenitizing temperature and precipitation behavior. Austenitizing was conducted at 1,100 and $1,175^{\circ}C$ of relatively low and high temperatures. Coarse primary carbides retained after austenitization were mainly V-rich MC type. They give a significant influence on hardeness and toughness, as well as wear resistance. Tempering was performed in the range of $500{\sim}600^{\circ}C$. The peak hardness resulting from the precipitation of the fine MC secondary carbides was observed near 520, irrespective of austenitizing temperature. Aging acceleration(or deceleration) did not occur with increasing austenitizing temperature because it mainly influences contents of V and C of matrix through the dissloution of coarse primary MC containing lots of V and C. The precipitation of secondary MC carbides, which also contain V and C, did not change the aging kinetics itself. In the 10V alloy containing much higher C content, the impact toughness was lower than 9V alloy, because of the larger amount of primary carbide and high hardness.

Microstructures of Hot Isostatic Pressed High Speed Steels (히핑처리된 분말 고속도공구강의 미세조직에 관한 연구)

  • 이언식
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.18-25
    • /
    • 1997
  • High speed steels with commercial compositions of 10V, Rex20, Rex25, T15, and ASP30 were gas-atomized and then consolidated by hot isostatic pressing (HIPping). The microstructures of gas-atomized powder, as-HiPped billet, and heat-treated billet have been characterized using optical microscope, scanning electron microscope and X-ray diffractometer. In the gas-atomized powders, the solidification structures of 10V and Rex25 alloys show that primary MC carbides embedded within the fine equiaxed dendrites, whereas those of Rex20, T15 and ASP30 alloys exhibited eutectic MC and/or M$_2$C carbides in the interdendritic region. The trace and dendritic morphologies of gas-atomized powder have been retained in as-HiPped billets. The microstructures of as-HiPped billets have been observed to consist of ferrite, $M_6C$ and MC carbides in other alloys with the exception of 10V alloy, which consists of ferrite and MC carbides. The hardness of heat-treated billet makes a favorable comparison with that of as-HIPped billet. This seems mainly to be due to the strengthening by the precipitation of secondary carbides and the change of matrix phase from $\alpha$-ferrite to martensite.

  • PDF

The Effect of Current and Preheat Temperature on Structure and Hardness of Stellite 12 Alloy Overlayer by PTA Process (PTA법에 의한 스텔라이트 12 합금 육성층의 조직과 경도에 미치는 전류와 예열온도의 영향)

  • Jung, B.H.;Kim, M.G.;Kim, G.D.;Kim, M.Y.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.246-252
    • /
    • 2000
  • Stellite 12 alloy-powder was overlaid on 410 stainless steel valve seat using plasma transferred arc(PTA) process. Variation of characteristic of microstructure and hardness of deposit with current(90~150 A) and preheat temperature(R.T.~$400^{\circ}C$) was investigated. Important conclusion obtained are as follows; All welding conditions used produced a sound deposit layer with no defect in single pass welding. The maximum deposit had 4.0~4.8 mm in thickness and its bead width was increased with increase of current and preheat temperature. The deposit showed hypoeutectic microstruture, which was consisting of primary cobalt dendrite and networked $M_7C_3$ type eutectic carbides. The amount of eutectic carbides was decreased and its dendritic secondary arm spacing was increased with increase of current. Hardness of the deposit was decreased with increase of current. Preheat temperature up to $400^{\circ}C$, however, showed little influence on the hardness and microstructure. The hardness was also influenced by diluted Fe content near the interface in addition to microstructure and dendritic secondary arm spacing. Hot hardness at $500^{\circ}C$ showed higher than 300 HV.

  • PDF

Effect of Primarily Solidified Structure on the Microstructure and the Mechanical Properties of High Cr White Iron (고크롬 백주철의 미세조직과 기계적 특성에 미치는 초기응고 조직의 영향)

  • Jo, Hyun-Wook;Do, Jeong-Hyeon;Jo, Won-Je;Chung, Hyun-Deuk;Lee, Je-Hyun;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.178-184
    • /
    • 2015
  • Due to excellent abrasion resistance the high-chrome white irons are widely used in mining and mineral industries. Minor variation of carbon content in 28% chrome white iron resulted in difference in primarily solidified microstructure. Sub-eutectic (hypoeutectic) composition led to formation of primarily solidified dendrites. Formation of primarily solidified dendrites which were supersaturated with carbon and chrome also caused precipitation of fine secondary carbides that are different from relatively large plate type $M_7C_3$ carbides in the eutectic structure. Small portion of primarily solidified dendrite expected to contribute significantly to the improvement of abrasion resistance of the white iron because the dendrites provided mechanical support to carbides. The relative fraction of primary dendrite increased with reduction of carbon content from the eutectic composition. The increased fraction of primary dendrite increased hardness value of the white irons.

Evolution of Mechanical Properties through Various Heat Treatments of a Cast Co-based Superalloy (주조용 코발트기 초내열합금의 열처리에 따른 기계적 특성 변화)

  • Kim, In-Soo;Choi, Baig-Gyu;Jung, Joong-Eun;Do, Jeong-Hyeon;Jung, In-Yong;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • The effects of a heat treatment on the carbide formation behavior and mechanical properties of the cobalt-based superalloy X-45 were investigated here. Coarse primary carbides formed in the interdendritic region in the as-cast specimen, along with the precipitation of fine secondary carbides in the vicinity of the primary carbides. Most of the carbides formed in the interdendritic region were dissolved into the matrix by a solution treatment at $1274^{\circ}C$. Solutionizing at $1150^{\circ}C$ led to the dissolution of some carbides at the grain boundaries, though this also caused the precipitation of fine carbides in the vicinity of coarse primary carbides. A solution treatment followed by an aging treatment at $927^{\circ}C$ led to the precipitation of fine secondary carbides in the interdendritic region. Very fine carbides were precipitated in the dendritic region by an aging heat treatment at $927^{\circ}C$ and $982^{\circ}C$ without a solution treatment. The hardness value of the alloy solutionized at $1150^{\circ}C$ was somewhat higher than that in the as-cast condition; however, various aging treatments did not strongly influence the hardness value. The specimens as-cast and aged at $927^{\circ}C$ showed the highest hardness values, though they were not significantly affected by the aging time. The specimens aged only at $982^{\circ}C$ showed outstanding tensile and creep properties. Thermal exposure at high temperatures for 8000 hours led to the precipitation of carbide at the center of the dendrite region and an improvement of the creep rupture lifetimes.

Effect of Heat Treatment on the Mechanical Properties of P/M High Speed Steel (분말 고속도로공구강의 기계적 특성에 미치는 열처리 영향)

  • 김용진
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.222-229
    • /
    • 1997
  • A P/M high speed steel of ASP 30 grade was austenitized, gas quenched and tempered at various conditional. The mechanical properties such as hardness, bend strength and fracture toughness were evaluated after heat treatment. The microstructure and the type and volume fraction of carbides were analyzed by an optical microscope, image analyzer and XRD. The primary carbides after the heat treatment were MC and $M_6C$ type. The volume of the total carbide varied from 10 to 15% depending on the austenitizing and tempering temperature. The tempering temperature for maximum hardness was at around 52$0^{\circ}C$. But the maximum bend strength was obtained at about 55$0^{\circ}C$. The fracture toughness was largely affected by the presence of retained austenite after gas quenching and secondary hardening during tempering.

  • PDF

Oxidation Behavior around the Stress Corrosion Crack Tips of Alloy 600 under PWR Primary Water Environment (PWR 1차측 환경에서 Alloy 600 응력부식균열 선단 부근에서의 산화 거동)

  • Lim, Yun Soo;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.141-150
    • /
    • 2012
  • Stress corrosion cracks in Alloy 600 compact tension specimens tested at $325^{\circ}C$ in a simulated primary water environment of pressurized water reactor were analyzed by analytical transmission electron microscopy and secondary ion mass spectroscopy (SIMS). From a fine-probe chemical analysis, oxygen was found on the grain boundary just ahead of the crack tip, and chromium oxides were precipitated on the crack tip and the grain boundary attacked by the oxygen diffusion, leaving a Cr/Fe depletion (or Ni enrichment) zone. The oxide layer inside the crack was revealed to consist of a double (inner and outer) layer. Chromium oxides existed in the inner layer, with NiO and (Ni,Cr) spinels in the outer layer. From the nano-SIMS analysis, oxygen was detected at the locations of intergranular chromium carbides ahead of the crack tip, which means that oxygen diffused into the grain boundary and oxidized the surfaces of the chromium carbides. The intergranular chromium carbide blunted the crack tip, thereby suppressing the crack propagation.

NANO-STRUCTURAL AND NANO-CHEMICAL ANALYSIS OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.491-500
    • /
    • 2012
  • The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.