• Title/Summary/Keyword: secondary bifurcation

Search Result 24, Processing Time 0.021 seconds

In-vivo Measurements of Blood Flow Characteristics in the Arterial Bifurcation Cascade Networks of Chicken Embryo (유정란 태아외부혈관의 단계적으로 분기되는 동맥 분지관 내부 혈액 유동특성의 in-vivo 계측)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.121-124
    • /
    • 2006
  • The arteries are very important in cardiovascular system and easily adapt to varying flow and pressure conditions by enlarging or shrinking to meet the given hemodynamic demands. The blood flow in arteries is dominated by unsteady flow phenomena due to heart beating. In certain circumstances, however, unusual hemodynamic conditions cause an abnormal biological response and often induce circulatory diseases such as atherosclerosis, thrombosis and inflammation. Therefore quantitative analysis of the unsteady pulsatile flow characteristics in the arterial blood vessels plays important roles in diagnosing these circulatory diseases. In order to verify the hemodynamic characteristics, in-vivo measurements of blood flow inside the extraembryonic arterial bifurcation cascade of chicken embryo were carried out using a micro-PIV technique. To analyze the unsteady pulsatile flow temporally, the (low images of RBCs were obtained using a high-speed CMOS camera at 250fps with a spatial resolution of $30{\mu}m\times30{\mu}m$ in the whole blood vessels. In this study, the unusual flow conditions such as flow separation or secondary flow were not observed in the arterial bifurcations. However, the vorticity has large values in the inner side of curvature of vessels. In addition, the mean velocity in the arterial blood vessel was decreased and pulsating frequency obtained by FFT analysis of velocity data extracted in front of the each bifurcation was also decreased as the bifurcation cascaded.

  • PDF

Drirect Numerical Simulation of Transitional Separated Flows Part II:Secondary Instability (천이박리유동의 직접수치모사 Part II:이차적 불안정성)

  • Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2973-2980
    • /
    • 1996
  • Secondary instability in an obstructed channel is investigated using direct numerical simulation. Flow geometry under consideration is a plane channel with two-dimensional thin obstacles mounted symmetrically in the vertical direction and periodically in the streamwise direction. Flow separation occurs at the tip of the sharp obstacles. As a basic flow, we consider an unsteady periodic solution which results from Hopf bifurcation. Depending on the Reynolds number, the basic flow becomes unstable to three-dimensional disturbances, which results in a chaotic flow. Numerical results obtained are consistent with experimental findings currently available.

Blood Flow in an Aortic Bifurcation Model: Pulsed Doppler Ultrasound and Laser Doppler Anemometry Studies (대동맥분기에서의 혈액유동: 맥도플러초음파 및 레이저도플러계측기를 사용한 연구)

  • Kim, Young-H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.43-46
    • /
    • 1992
  • $\underline{In\;vitro}$ velocity measurements were made using both the pulsed Doppler ultrasound (PDU) machine and laser Doppler anemometer (LDA) system in order to investigate the flow characteristics near the aortic bifurcation. Velocities measured from the PDU machine was in good agreement with those from the LDA. The flow in the daughter branches was three-dimensional with a secondary flow. The oscillating wall shear stress with this secondary fluid motion is well correlated with the localization of the atherosclerosis.

  • PDF

Influence of Inlet Secondary Curvature on Hemodynamics in Subject-Specific Model of Carotid Bifurcations (환자 특정 경동맥 분기부 모델 혈류유동에 대한 입구부 이차곡률의 영향)

  • Lee, Sang-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.479-486
    • /
    • 2011
  • In image-based CFD modeling of carotid bifurcation hemodynamics, it is often not possible (or at least not convenient) to impose measured velocity profiles at the common carotid artery inlet. Instead, fully-developed velocity profiles are usually imposed based on measured flow rates. However, some studies reported a pronounced influence of inflow boundary conditions that were based on actual velocity profiles measured by magnetic resonance imaging which showing the unusual presence of a high velocity band in the middle of the vessel during early diastole inconsistent with a Dean-type velocity profile. We demonstrated that those velocity profiles were induced by the presence of modest secondary curvature of the inlet and set about to test whether such more "realistic" velocity profiles might indeed have a more pronounced influence on the carotid bifurcation hemodynamics. We found that inlet boundary condition with axisymmetric fully-developed velocity profile(Womersley flow) is reasonable as long as sufficient CCA inlet length of realistic geometry is applied.

Secondary buckling analysis of spherical caps

  • Kato, Shiro;Chiba, Yoshinao;Mutoh, Itaru
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.715-728
    • /
    • 1997
  • The aim of this paper is to investigate the secondary buckling behaviour and mode-coupling of spherical caps under uniformly external pressure. The analysis makes use of a rotational finite shell element on the basis of strain-displacement relations according to Koiter's shell theory (Small Finite Deflections). The post-buckling behaviours after a bifurcation point are analyzed precisely by considering multi-mode coupling between several higher order harmonic wave numbers: and on the way of post-buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is examined step by step. The secondary buckling point that has zero eigen-value of incremental stiffness matrix and the corresponding secondary mode are obtained, moreover, the secondary post-buckling path is traced.

Flow Analyses in the Bifurcated Duct with PIV System and Computer Simulation (입자영상유속계와 컴퓨터 시뮬레이션을 이용한 분기관내 유동해석)

  • Sub, Sang-Ho;Choi, Yul;Roh, Hyung-Woon;Doh, Deog-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.123-130
    • /
    • 1999
  • The objective of the current study is to understand steady 3-dimensional flow phenomena in a bifurcated duct experimentally. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. The gray level cross-correlation method is applied to the image processing algorithm. The subpixel and the area interpolation methods are used to obtain the final velocity vectors. The finite volume predictions are used to analyze the flow patterns in the bifurcation model. The results of the computer simulation and the PIV experiment for three-dimensional flow show the recirculation zone and the formation of the paired secondary flow distal to the apex of the bifurcation model. The results obtained with the two methods also show that the branch flow strongly strikes the inner wall due to the inertial effect and accompanied helical motion as it flows toward the outer wall.

Nonlinear Dynamic Response of Cantilevered Carbon Nanotube Resonator by Electrostatic Excitation (정전기력 가진에 의한 외팔보형 탄소나노튜브 공진기의 비선형 동적 응답)

  • Kim, Il-Kwang;Lee, Soo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.813-819
    • /
    • 2011
  • This paper predicted nonlinear dynamic responses of a cantilevered carbon nanotube(CNT) resonator incorporating the electrostatic forces and van der Waals interactions between the CNT cantilever and ground plane. The structural model of CNT includes geometric and inertial nonlinearities to investigate various phenomena of nonlinear responses of the CNT due to the electrostatic excitation. In order to solve this problem, we used Galerkin's approximation and the numerical integration techniques. As a result, the CNT nano-resonator shows the softening effect through saddle-node bifurcation near primary resonance frequency with increasing the applied AC and DC voltages. Also we can predict nonlinear secondary resonances such as superharmonic and subharmonic resonances. The superharmonic resonance of the nano-resonator is influenced by applied AC voltage. The period-doubling bifurcation leads to the subharmonic resonance which occurs when the nano-resonator is actuated by electrostatic forces as parametric excitation.

FLOW INSTABILITY IN A BAFFLED CHANNEL FLOW (배플이 부착된 채널 유동의 불안정성)

  • Kang, C.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Flow instability is investigated in a two-dimensional channel with thin baffles placed symmetrically in the vertical direction and periodically in the streamwise dircetion. At low Reynolds numbers, the flow is steady and symmetric. Above a critical Reynolds number, the steady flow undergoes a Hopf bifurcation leading to unsteady periodic flow. As Reynolds number further increases, we observe the onset of secondary instability. At high Reynolds numbers, the two-dimensional periodic flow becomes three dimmensional. To identify the onset of secondary instability, we carry out Floquet stability analysis. We obseved the transition to 3D flow at a Reynolds number of about 125. Also, we computed dominant spanwise wavenumbers near the critical Reynolds number, and visualized vortical structures associated with the most unstable spanwise wave.

Numerical study of dividing open-channel flows at bifurcation channel using TELEMAC-2D (TELEMAC-2D모형을 이용한 개수로 분류흐름에 대한 수치모의 연구)

  • Jung, Dae Jin;Jang, Chang-Lae;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.635-644
    • /
    • 2016
  • This study investigates variation of flow characteristics due to variation of branch channel width and discharge ratio at bifurcation channel using 2D numerical model. The calculated result considering secondary flow is more accurate and stable than without considering one. The diversion flow rate ($Q_3/Q_1$) is reduced by flow stagnation effect according to the interaction of the secondary flow and flow separation zone in branch channel. The less upstream inflow or the lower upstream velocity, the bigger variation of diversion flow rate by changing branch channel width. At uniform downstream boundary condition, the rate of change in Froude number of downstream of main channel($Fr_2$)-diversion flow rate ($Q_3/Q_1$) relations is similar about -2.4843~-2.6675 when branch channel width ratio (b/B) is decreased. At uniform diversion flow rate ($Q_3/Q_1$) condition, the width of recirculation zone in branch channel is decreased when branch channel width ratio (b/B) is decreased. The less upstream inflow in the case of increasing branch channel width or the narrower branch channel width in the case of increasing upstream inflow, the bigger reduction ratio of recirculation zone width. At uniform inflow discharge ($Q_1$) condition, diversion flow rate, the width and length of recirculation zone in branch channel are decreased when branch channel width ratio (b/B) is decreased.