• Title/Summary/Keyword: second-order accuracy

Search Result 563, Processing Time 0.036 seconds

Unbilled Revenue and Analysts' Earnings Forecasts (진행기준 수익인식 방법과 재무분석가 이익예측 - 미청구공사 계정을 중심으로 -)

  • Lee, Bo-Mi;Park, Bo-Young
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.151-165
    • /
    • 2017
  • This study investigates the effect of revenue recognition by percentage of completion method on financial analysts' earnings forecasting information in order industry. Specifically, we examines how the analysts' earnings forecast errors and biases differ according to whether or not to report the unbilled revenue account balance and the level of unbilled revenue account balance. The sample consists of 453 firm-years listed in Korea Stock Exchange during the period from 2010 to 2014 since the information on unbilled revenue accounts can be obtained after the adoption of K-IFRS. The results are as follows. First, we find that the firms with unbilled revenue account balances have lower analysts' earnings forecast accuracy than the firms who do not report unbilled revue account balances. In addition, we find that the accuracy of analysts' earnings forecasts decreases as the amount of unbilled revenue increases. Unbilled revenue account balances occur when the revenue recognition of the contractor is faster than the client. There is a possibility that managerial discretionary judgment and estimation may intervene when the contractor calculates the progress rate. The difference between the actual progress of the construction and the progress recognized by the company lowers the predictive value of financial statements. Our results suggest that the analysts' earnings forecasts may be more difficult for the firms that report unbilled revenue balances as applying the revenue recognition method based on the progress criteria. Second, we find that the firms reporting unbilled revenue account balances tend to have higher the optimistic biases in analysts' earnings forecast than the firms who do not report unbilled revenue account balances. And we find that the analysts' earnings forecast biases are increases as the amount of unbilled revenue increases. This study suggests an effort to reduce the arbitrary adjustment and estimation in the measurement of the progress as well as the introduction of the progress measurement method which can reflect the actual progress. Investors are encouraged to invest and analyze the characteristics of the order-based industry accounting standards. In addition, the results of this study empower the accounting transparency enhancement plan for order industry proposed by the policy authorities.

  • PDF

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF

3D Point Cloud Reconstruction Technique from 2D Image Using Efficient Feature Map Extraction Network (효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.408-415
    • /
    • 2022
  • In this paper, we propose a 3D point cloud reconstruction technique from 2D images using efficient feature map extraction network. The originality of the method proposed in this paper is as follows. First, we use a new feature map extraction network that is about 27% efficient than existing techniques in terms of memory. The proposed network does not reduce the size to the middle of the deep learning network, so important information required for 3D point cloud reconstruction is not lost. We solved the memory increase problem caused by the non-reduced image size by reducing the number of channels and by efficiently configuring the deep learning network to be shallow. Second, by preserving the high-resolution features of the 2D image, the accuracy can be further improved than that of the conventional technique. The feature map extracted from the non-reduced image contains more detailed information than the existing method, which can further improve the reconstruction accuracy of the 3D point cloud. Third, we use a divergence loss that does not require shooting information. The fact that not only the 2D image but also the shooting angle is required for learning, the dataset must contain detailed information and it is a disadvantage that makes it difficult to construct the dataset. In this paper, the accuracy of the reconstruction of the 3D point cloud can be increased by increasing the diversity of information through randomness without additional shooting information. In order to objectively evaluate the performance of the proposed method, using the ShapeNet dataset and using the same method as in the comparative papers, the CD value of the method proposed in this paper is 5.87, the EMD value is 5.81, and the FLOPs value is 2.9G. It was calculated. On the other hand, the lower the CD and EMD values, the better the accuracy of the reconstructed 3D point cloud approaches the original. In addition, the lower the number of FLOPs, the less memory is required for the deep learning network. Therefore, the CD, EMD, and FLOPs performance evaluation results of the proposed method showed about 27% improvement in memory and 6.3% in terms of accuracy compared to the methods in other papers, demonstrating objective performance.

Simulation Study on Parentage Analysis with SNPs in the Japanese Black Cattle Population

  • Honda, Takeshi;Katsuta, Tomohiro;Mukai, Fumio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.10
    • /
    • pp.1351-1358
    • /
    • 2009
  • Parentage tests using polymorphic DNA marker are commonly performed to avoid incorrect recording of the parental information of livestock animals, and single-nucleotide polymorphisms (SNPs) are becoming the method of choice. In Japanese Black cattle, parentage tests based on the exclusion method using microsatellite markers are currently conducted; however, an alternative SNP system aimed at parentage tests has recently been developed. In the present study, two types of simulations were conducted using the pedigree data of two subpopulations in the breed (subpopulations of Hyogo and Shimane prefectures) in order to examine the effect of actual genetic and breeding structures. The first simulation (simulation 1) investigated the usefulness of SNPs for excluding a close relative of the true sire; the second one (simulation 2) investigated the accuracy of sire identification tests for multiple full-sib putative sires by a combined method of exclusion and paternity assignment based on the LOD score. The success rates of excluding a single fullsib and sire of the true sires were, respectively, 0.9915 and 0.9852 in Hyogo and 0.9848 and 0.9852 in Shimane, when 50 SNPs with minor allele frequency (MAF: q) of 0.25${\leq}$q${\leq}$0.35 were used in simulation 1. The success rates of sire identification tests based solely on the exclusion method were relatively low in simulation 2. However, assuming that 50 SNPs with MAF of 0.25${\leq}$q${\leq}$0.35 or 0.45${\leq}$q${\leq}$0.5 were available, the total success rates including achievements due to paternity assignment were, respectively, 0.9430 and 0.9681 in Hyogo and 0.8999 and 0.9399 for Shimane, even when each true sire was assumed to compete with 50 full-sibs.

Data-Based Model Approach to Predict Internal Air Temperature of Greenhouse (데이터 기반 모델에 의한 온실 내 기온 변화 예측)

  • Hong, Se Woon;Moon, Ae Kyung;Li, Song;Lee, In Bok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.9-19
    • /
    • 2015
  • Internal air temperature of greenhouse is an important variable that can be influenced by the complex interaction between outside weather and greenhouse inside climate. This paper focuses on a data-based model approach to predict internal air temperature of the greenhouse. External air temperature, solar radiation, wind speed and wind direction were measured next to an experimental greenhouse supported by the Electronics and Telecommunications Research Institute and used as input variables for the model. Internal air temperature was measured at the center of three sections of the greenhouse and used as an output variable. The proposed model consisted of a transfer function including the four input variables and tested the prediction accuracy according to the sampling interval of the input variables, the orders of model polynomials and the time delay variable. As a result, a second-order model was suitable to predict the internal air temperature having the predictable time of 20-30 minutes and average errors of less than ${\pm}1K$. Afterwards mechanistic interpretation was conducted based on the energy balance equation, and it was found that the resulting model was considered physically acceptable and satisfied the physical reality of the heat transfer phenomena in a greenhouse. The proposed data-based model approach is applicable to any input variables and is expected to be useful for predicting complex greenhouse microclimate involving environmental control systems.

Design and Development of Network for Housing Estate Security System

  • Nachin, Awacharin;Mitatha, Somsak;Dejhan, Kobchai;Kirdpipat, Patchanon;Miyanaga, Yoshikazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1480-1484
    • /
    • 2003
  • This paper presents the design and development of network for housing estate security system. The system can cover up to 961 houses which can be up to 1,200 meters long transfer rate of 9,600 bps. This system uses checking and warning the abnormal situation. More over this system has ability to control switch on/off the electrical equipment in the house via AC line control system. The system consists of 4 parts. The first part is a security system of each house using MCS-51 microcontroller as a central processing unit scan 32 sensors and control 8 appliances and send alarm. The MCS-51 microcontroller received control signal via telephone used DTMF circuit. The second part is distributed two levels master/slave network implementing after RS-485 serial communication standard. The protocol its base on the OSI (Open Systems Interconnection) 7 layers protocol model design focus on speed, reliability and security of data that is transferred. The network security using encrypt by DES algorithm, message sequence, time stamp checking and authentication system when user to access and when connect new device to this system. Flow control in system is Poll/Select and Stop-and-Wait method. The third part is central server that using microcomputer which its main function are storing event data into database and can check history event. The final part is internet system which users can access their own homes via the Internet. This web service is based on a combination of SOAP, HTTP and TCP/IP protocols. Messages are exchanged using XML format [6]. In order to save the number of IP address, the system uses 1 IP address for the whole village in which all homes and appliance in this village are addressed using internal identification numbers. This proposed system gives the data transfer accuracy over 99.8% and maximum polling time is 1,120 ms.

  • PDF

Transonic Wing Flutter Analysis Using a Parallel Euler Solver (병렬화된 오일러 코드를 이용한 3차원 날개의 천음속 플러터 해석)

  • Kwon, Hyuk-Jun;Park, Soo-Hyung;Kim, Kyung-Seok;Kim, Jong-Yun;Lee, In;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.10-16
    • /
    • 2005
  • In this paper, a three-dimensional Euler aeroelastic analysis program is developed with a second-order staggered algorithm to reduce the lagging errors between the fluid and structural solvers. In the unsteady aerodynamic analysis, a dual-time stepping method based on the diagonalized-ADI algorithm is adopted to improve the time accuracy and a parallelized multi-grid method is used to save the computing time. The aeroelastic analyses of AGARD 445.6 wing model have been performed to verify the Euler aeroelastic analysis code. The analysis results are compared with the experimental data and other computational results. The results show comparatively good correlation when they are compared with other references.

A Name Recognition Based Call-and-Come Service for Home Robots (가정용 로봇의 호출음 등록 및 인식 시스템)

  • Oh, Yoo-Rhee;Yoon, Jae-Sam;Park, Ji-Hun;Kim, Min-A;Kim, Hong-Kook;Kong, Dong-Geon;Myung, Hyun;Bang, Seok-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.360-365
    • /
    • 2008
  • We propose an efficient robot name registration and recognition method in order to enable a Call-and-Come service for home robots. In the proposed method for the name registration, the search space is first restricted by using monophone-based acoustic models. Second, the registration of robot names is completed by using triphone-based acoustic models in the restricted search space. Next, the parameter for the utterance verification is calculated to reduce the acceptance rate of false calls. In addition, acoustic models are adapted by using a distance speech database to improve the performance of distance speech recognition, Moreover, the location of a user is estimated by using a microphone array. The experimental result on the registration and recognition of robot names shows that the word accuracy of speech recognition is 98.3%.

  • PDF

The Optimization of Fuzzy Logic Controllers Using Genetic Algorithm (유전 알고리듬을 이용한 퍼지 제어기의 최적화)

  • Chang, Wook;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.48-57
    • /
    • 1997
  • This paper presents the automatic construction and parameter optimization technique for fuzzy logic controllers using genetic algorithm. In general. the design of fuzzy logic controllers has difficulties in the acq~lisition of expert's knowledge and relies to a great extent on empirical and heuristic knowledge which, in many cases, cannot be objectively justified. So, the performance of the controllers c:an be degraded in the case of plant parameter variations or unpredictable incident which a designer may have ignored, and the parameters of fuzzy logic controllers obtained by expert's control action may not be optirnal. Some of these problems can be resolved by the use of genetic algorithm. The proposed method can tune the parameters of fuzzy logic controllers including scaling factors and determine: the appropriate number of fuzzy rulcs systematically. Finally, we provides the second order dead time plant to evaluate the feasibility and generality of the proposed method. Comparison shows that the proposed method can produce fuzzy logic controllers with higher accuracy and a smaller number of fuzzy rules than manually tuned fuzzy logic controllers.

  • PDF