• Title/Summary/Keyword: second order difference equations

Search Result 106, Processing Time 0.027 seconds

Free Surface Flow in a Trench Channel Using 3-D Finite Volume Method

  • Lee, Kil-Seong;Park, Ki-Doo;Oh, Jin-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.429-438
    • /
    • 2011
  • In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady Reynolds-averaged Navier-Stokes (RANS) equations are closed with the ${\kappa}-{\epsilon}$ model. The artificial compressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as velocity components and pressure. The governing equations are discretized in a conservation form using a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the kinematic free surface boundary conditions at the free surface instead of the dynamic free surface boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good overall agreement with the laboratory experimental measurement for the turbulent flow.

Simulation of the Dispersion of Air Pollutants in the Shihwa Area (시화지구의 대기오염물질 확산에 관한 전산모사)

  • Song, Eun-Seok;Yoo, Jin-Bog;Kim, Byoung-Su;Yi, Sung-Chul;Hong, Min-Sun;Jang, Young-Kee
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.1
    • /
    • pp.35-48
    • /
    • 1998
  • Gaussian type models have limitations on predicting a detailed description of the near flow and pollution leads over complex terrains under neutral atmospheric conditions. Also, most models used recently have lack of ability to include atmospheric reactions. The model based on the numerical solution of the time-averaged Navier-Stokes equations and conservation equations needs to be developed to improve the limitations mentioned above. When the model was applied to the Shihwa area where the tracer experiment had been carried out, the simulation results have a great difference from the experimental results. There are two reasons that make the difference between the results by the model and the experiment. First, the Shihwa area is not a complex terrain. Second, meteorological data is insufficient. Therefore, the model should be applied to predict the dispersion of air pollutants over complex terrain rather than flat terrain in order that the model could be verified because the model was developed for the prediction of the dispersion over a complex terrain.

  • PDF

Coupled Bending and Torsional Vibrations Analysis of Cracked L-shaped Beam (크랙을 가진 L형 단면 보의 횡-비틀림 연성진동 해석)

  • Son, In-Soo;Kim, Chang-Ho;Cho, Jeong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.8-15
    • /
    • 2011
  • In this paper, the influence of a crack on the natural frequency of cracked cantilever L-shaped beam with coupled bending and torsional vibrations by analytically and experimentally is analyzed. The L-shaped beam with a crack is modeled by Hamilton's principle with consideration of bending and torsional energy. The two coupled governing differential equations are reduced to one sixth-order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first, second and third mode of fracture and to be always opened during the vibrations. The theoretical results are validated by a comparison with experimental measurements. The maximal difference between the theoretical results and experimental measurements of the natural frequency is less than 7.5% in the second vibration mode.

Constitutive Equations for Dilute Bubble Suspensions and Rheological Behavior in Simple Shear and Uniaxial Elongational Flow Fields

  • Seo Dongjin;Youn Jae Ryoun
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.131-138
    • /
    • 2005
  • A theoretical model is proposed in order to investigate rheological behavior of bubble suspension with large deformation. Theoretical constitutive equations for dilute bubble suspensions are derived by applying a deformation theory of ellipsoidal droplet [1] to a phenomenological suspension theory [2]. The rate of deformation tensor within the bubble and the time evolution of interface tensor are predicted by applying the proposed constitutive equations, which have two free fitting parameters. The transient and steady rheological properties of dilute bubble suspensions are studied for several capillary numbers (Ca) under simple shear flow and uniaxial elongational flow fields. The retraction force of the bubble caused by the interfacial tension increases as bubbles undergo deformation. The transient and steady relative viscosity decreases as Ca increases. The normal stress difference (NSD) under the simple shear has the largest value when Ca is around 1 and the ratio Of the first NSD to the second NSD has the value of 3/4 for large Ca but 2 for small Ca. In the uniaxial elongational flow, the elongational viscosity is three times as large as the shear viscosity like the Newtonian fluid.

FITTED MESH METHOD FOR SINGULARLY PERTURBED REACTION-CONVECTION-DIFFUSION PROBLEMS WITH BOUNDARY AND INTERIOR LAYERS

  • Shanthi V.;Ramanujam N.;Natesan S.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.49-65
    • /
    • 2006
  • A robust numerical method for a singularly perturbed second-order ordinary differential equation having two parameters with a discontinuous source term is presented in this article. Theoretical bounds are derived for the derivatives of the solution and its smooth and singular components. An appropriate piecewise uniform mesh is constructed, and classical upwind finite difference schemes are used on this mesh to obtain the discrete system of equations. Parameter-uniform error bounds for the numerical approximations are established. Numerical results are provided to illustrate the convergence of the numerical approximations.

A Numerical Dynamic Simulation of the Slider in HDD (하드디스크 슬라이더의 동적수치해석)

  • 김도완;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.146-153
    • /
    • 1999
  • A numerical dynamic simulation is necessary to investigate the capacity of the HDD. The slider surface become more and more complicated to make the magnetized area smaller and readback signal stronger. So a numerical dynamic simulation must be preceded to develop a new slider in HDD. The dynamic simulations of air-lubricated slider bearing have been peformed using FIFD(Factored Implicit Finite Difference) method. The governing equation, Reynolds equation Is modified with Fukui and Kaneko model(FK model) which includes the first and the second-order slip. The equations of motion for the slider bearing are solved simultaneously with the modified Reynolds equation for the case of three degrees of freedom. The slider transient response for disk step bump and slider impulse force is given for various case and for iteration algorithm and new algorithm.

  • PDF

Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder (진동하는 원주주위 유동의 직접수치해석)

  • Kang S. J.;Tanahashi M.;Miyauchi T.;Lee Y. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.26-34
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Navier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to 25% of the cylinder diameter and in the case of the lock-in region it is 60%. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder (진동하는 원주주위 유동의 직접수치해석)

  • KANG Shin-Jeong;TANAHASHI Mamoru;MIYAUCHI Toshio;NAM Cheong-Do;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.181-188
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Wavier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to $25\%$ of the cylinder diameter and in the case of the lock-in region it is $60\%$. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

Development of A Three-Dimensional Euler Solver for Analysis of Contraction Flow (수축부 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.175-181
    • /
    • 1995
  • Three-Dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for the various contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreements.

  • PDF

FINITE-DIFFERENCE BISECTION ALGORITHMS FOR FREE BOUNDARIES OF AMERICAN OPTIONS

  • Kang, Sunbu;Kim, Taekkeun;Kwon, Yonghoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • This paper presents two algorithms based on the Jamshidian equation which is from the Black-Scholes partial differential equation. The first algorithm is for American call options and the second one is for American put options. They compute numerically free boundary and then option price, iteratively, because the free boundary and the option price are coupled implicitly. By the upwind finite-difference scheme, we discretize the Jamshidian equation with respect to asset variable s and set up a linear system whose solution is an approximation to the option value. Using the property that the coefficient matrix of this linear system is an M-matrix, we prove several theorems in order to formulate a bisection method, which generates a sequence of intervals converging to the fixed interval containing the free boundary value with error bound h. These algorithms have the accuracy of O(k + h), where k and h are step sizes of variables t and s, respectively. We prove that they are unconditionally stable. We applied our algorithms for a series of numerical experiments and compared them with other algorithms. Our algorithms are efficient and applicable to options with such constraints as r > d, $r{\leq}d$, long-time or short-time maturity T.