• Title/Summary/Keyword: second law of thermodynamics

Search Result 29, Processing Time 0.022 seconds

Rational Efficiency of Compression Processes by the Second Law of Thermodynamics (열역학 제2법칙에 의한 압축과정의 합리적 효율)

  • 정평석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1200-1210
    • /
    • 1990
  • Conventional efficiencies of the adiabatic compression process such as isentropic efficiency and polytropic efficiency can be explained as exergetic efficiencies replacing the reference atmospheric temperature with the temperature which can be determined in the process itself. So that, other efficies such as maximum isentropic efficiency can be defined by giving proper reference temperatures. By applying the same logical principles, exergetic and other rational efficiencies for the non-adiabatic compression process are also defined and discussed for their physical meanings and reasonable engineering applications.

Analytical Method for Elastoplastic Behavior of Truss element under Cyclic Axial Loading (반복 축 하중을 받는 트러스 요소의 탄소성 좌굴거동 해석기법에 관한 연구)

  • Baek, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.377-387
    • /
    • 2008
  • The post-buckling behavior of slender members, such as the chord of truss structures generally implies extreme strength degradation. The buckling strength is usually determined as the performance of the compressed steel members, so it is important to understand the exact buckling behavior of a member in order to design the entire structure. A target analytical model is usually divided by beam or shell element when we simulate the buckling behavior of a compressed steel member such as atruss member. In this case, it is possible to accurately obtain the behavior, but such would be expensive and would require experience inanalysis even in monotonic loading. In this paper, we propose a consistent and convenient method to analyze the post-buckling behavior of elastoplastic compression members. The present methods are formulated to satisfy the second law of thermodynamics. Three numerical examples were tested to determine the validity of the proposed model in cyclic loading with comparable F.E.M results.

Energy and Exergy Analysis of a Steam Turbine Cogeneration System (증기터빈 열병합 시스템에 대한 에너지 및 엑서지 해석)

  • Cho, Sung-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1397-1405
    • /
    • 2009
  • In recent decades, exergy analysis has been holding spotlight as a useful tool in the design, assessment, optimization, and improvement of energy system. This paper presents the results of the energy and exergy analysis of a steam turbine cogeneration system for industrial complex using two efficiency concepts of conventional one and exergetic one. In order to obtain the destroyed exergy of each component, mathematical analysis is conducted by using exergy balance and the second law of thermodynamics, according as the parameters are changed, such as the ratio of returned process steam, process steam supplied, temperature and pressure of boiler and power. The computer program developed in this study can determine the efficiencies and exergy destroyed at each component of cogeneration system. As a result of this study, a component having the largest destroyed exergy was boiler. And closed and opened feedwater heater had the lowest one. The affects to the cogeneration system due to the variation of process steam flow and return rate of condensed water is shown that the total electric power efficiency(${\eta}_E$) is decreased as increasing the return rate of condensed water under constant process steam flow. As the boiler pressure is increased for the more production of electricity, the efficiency of cogeneration system was decreased.

  • PDF

System Thinking Analysis on The Organizational Entropic Measures: Focusing on Workers' Speedy Compensation (조직의 엔트로피식 처방에 대한 시스템 사고 분석: 산업재해 신속보상을 중심으로)

  • Yang, Jeong-Ho
    • Korean System Dynamics Review
    • /
    • v.14 no.4
    • /
    • pp.63-89
    • /
    • 2013
  • The purpose of this paper is to explain the entropic measures could cause the organization to increase the entropy. The organization as an open system has a tendency to input new energy to adapt itself to the change in its surroundings. This intention of inputting energy into organization is based on the second law of thermodynamics, the laws of entropy.Entropy is a measure of disorder, or a measure of progressing towards thermodynamic equilibrium. The entropy of an isolated system increases. Organizations have to open to their environment, have to do something to reduce their entropy. But, this attempt to reduce entropy entails another entropy. This study shows the side effects by giving examples of illegal receipt of worker's compensation insurance. The implications through the cases of illegal receipt of workers' compensation are as follows. Firstly, organizational policy is that inaction in itself may be the best policy, unless we always think the action best. Secondly, public organization should be careful in substituting business management in the private sector such as customer satisfaction(CS) for the value in public sector. Thirdly, the setting the expiration date of organizational policy could be the way to slow down the degree of entropy.

  • PDF

Exergy Analysis of Regenerative Steam-Injection Gas Turbine Systems (증기분사 재생 가스터빈 시스템의 엑서지 해석)

  • Kim, Kyoung-Hoon;Jung, Young-Guan;Han, Chul-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.45-54
    • /
    • 2009
  • An exergy analysis is carried out for the regenerative steam-injection gas turbine systems which has a potential of enhanced thermal efficiency and specific power. Using the analysis model in the view of the second law of thermodynamics, the effects of pressure ratio, steam injection ratio, ambient temperature and turbine inlet temperature are investigated on the performance of the system such as exergetic efficiency, heat recovery ratio of heat exchangers, exergy destruction, loss ratios, and on the optimal conditions for maximum exergy efficiency. The results of computation show that the regenerative steam-injection gas turbine system can make a notable enhancement of exergy efficiency and reduce irreversibilities of the system.

A thermodynamic analysis on the utilization of thermal water (온수 이용에 관한 열역학적 해석)

  • 이세균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 1987
  • An analysis on the thermodynamic optimum use of thermal water has been accomplished. The systems investigated are power generation and space heating. The space heating systems considered in this study are direct heating, heat pumps and heat pump assisted heating. The object of this study is to find the optimum selection and operation of the system under the given resources. The measure of such optimum conditions is the EFFECTIVENESS, the concept of efficiency based upon the Second Law of Thermodynamics. The temperature of water to waste is identified as the most important parameter to be optimized. The analysis indicates that for high temperature resources (higher than about 425K) power generation yields the best performance and is therefore recommended. The heat pumps are recommended for the resource temperature less than about 327K. The heat pump assisted heating system shows its superiority for the very narrow temperature range (320K-330K) and thus the use of this system should be considered when the flow rate is very limited. thus the direct heating is appropriate for the temperature range of 330K-425K. The analysis also shows the optimum capacity of thermal water, which may be useful for the initial estimation of heating or power generation potentials of given resources.

Finite Element Formulation for the Finite Strain Thermo-Elasto-Plastic Solid using Exponential Mapping Algorithm : Model and Time Integration Scheme (지수 사상을 이용한 비선형 열-탄소성 고체의 유한요소해석 : 모델과 시간적분법)

  • 박재균
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.19-25
    • /
    • 2004
  • The linear analysis for the balance of linear momentum of a structure is relatively easy to perform, but the error becomes large when the structure experiences large deformation. Therefore, the material and geometric nonlinearity need to be considered for the precise calculations in that case. The plastic flow of a ductile steel-like metal mainly transforms its dissipated mechanical energy into heat, which transfers under the first and second law of thermodynamics. This heat increases the temperature of the material and the strength of the material decreases accordingly, which affects mechanical behavior of the given structure. This paper presents a finite-strain thermo-elasto-plastic steel model. This model can handle large deformation and thermal load simultaneously, which is common during earthquake periods. Two 3-dimensional finite element analyses verify this formulation.

A Study on Cooling Performance and Exergy Analysis of Desiccant Cooling System in Various Regeneration Temperature and Outdoor Air Conditions (재생온도와 외기조건 변화에 따른 제습 냉방시스템의 냉방 성능 및 엑서지 해석에 관한 연구)

  • Lee, Jang Il;Hong, Seok Min;Byun, Jae Ki;Choi, Young Don;Lee, Dae Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.413-421
    • /
    • 2014
  • Desiccant cooling system is an air conditioning system that uses evaporative cooler to cool air and it can perform cooling by using heat energy only without electrically charged cooler. Thus, it can solve many problems of present cooling system including the destruction of ozone layer due to the use of CFC[chloro fluoro carbon] affiliated refrigerants and increase of peak power during summer season. In this study, cooling performance and exergy analysis was conducted in order to increase efficiency of desiccant cooling system. Especially, using exergy analysis based on the second law of thermodynamics can resolve the issue related to system efficiency in a more fundamental way by analyzing the cause of exergy destruction both in whole system and each component. The purpose of this study is to evaluate COP[coefficient of performance], cooling capacity and exergy performance of desiccant cooling system incorporating a regenerative evaporative cooler in various regeneration temperature and outdoor air conditions.

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.