• Title/Summary/Keyword: second generation high temperature superconducting coil

Search Result 6, Processing Time 0.025 seconds

Fast iterative algorithm for calculating the critical current of second generation high temperature superconducting racetrack coils

  • Huang, Xiangyu;Huang, Zhen;Xu, Xiaoyong;Li, Wan;Jin, Zhijian
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.53-58
    • /
    • 2019
  • The critical current is one of the key parameters of high temperature superconducting (HTS) racetrack coils. Therefore, it is significant to calculate critical currents of HTS coils. This paper introduces a fast iterative algorithm for calculating the critical current of second generation (2G) HTS coils. This model does not need to solve long charging transients which greatly reduced the amount of calculation. To validate this model, the V-I curve of four 2G HTS double racetrack coils are measured. The effect of the silicon steel sheet on the critical current of the racetrack coil is also studied based on this algorithm.

Comparison of superconducting generator with 2G HTS and MgB2 wires

  • Park, S.I.;Kim, J.H.;Le, T.D.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.48-52
    • /
    • 2013
  • This paper compares the features of second generation (2G) High Temperature Superconducting (HTS) field coil with those of magnesium diboride ($MgB_2$) field coil for a 10 MW class superconducting generator. Both coils can function effectively in their respective magnetic flux density range: 10-12 T for 2G HTS field coil, 2 T for $MgB_2$ superconducting field coil. Even though some leading researchers have been developing 10 MW class superconducting generator with 2G HTS field coil, other research groups have begun to focus on $MgB_2$ wire, which is more economical and suitable for mass production. However 2G HTS wire is still appealing in functions such as in-field property and critical temperature, it shows higher in-field property and critical temperature than $MgB_2$ wire.

Magnetic Field Analysis of the Field Coil for 10 MW Class Superconducting Wind Turbines (10 MW급 초전도 풍력발전기 계자코일 전자장 해석)

  • Kim, Ji-Hyung;Park, Sa-Il;Kim, Ho-Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.18-22
    • /
    • 2012
  • This paper presents the magnetic field analysis of the racetrack double pancake field coil for the 10 MW class superconducting wind turbine which is considered to be the next generation of wind turbines using the 3 Dimensional FEM(Finite Elements Method). Generally, the racetrack-shaped field coil which is wound by the second generation(2G) superconducting wire in the longer axial direction is used, because the racetrack-shaped field coil generates the higher magnetic field density at the minimum size and reduces the synchronous reactance. To analysis the performance of the wind turbines, It is important to calculate the distribution of magnetic flux density at the straight parts and both end sections of the racetrack-shaped high temperature superconductivity(HTS) field coil. In addition, Lorentz force acting on the superconducting wire is calculated by the analysis of the magnetic field and it is important that through this way Lorentz force can be used as a parameter in the mechanical analysis which analyzes the mechanical stress on the racetrack-shaped field coil.

A Study on Stability Criterion for Cryocooler Operating HTS Coils (냉동기운전 고온초전도코일의 안전성평가기준에 관한 연구)

  • Ishiyama, Atsushi;Kim, Seok-Beom;Han, Kyung-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.317-323
    • /
    • 2001
  • We investigated the stability of cryocooler-cooled high-temperature superconducting (HTS) coils by using a computer program based on FEM. In this study, the current at which "thermal runaway" occurs, which depends on the relationship between the cooling power of the cryocooler and the heat generation in HTS coils, was adopted as a stability criterion of cryocooler operating HTS coils. It was shown that cryocooler-cooled HTS coil was stable in operating current above the critical current from the numerical analysis results by HTS model coil. And also, if we efficiently remove the heat generation from HTS coils by potimizing heat drain, the ramp-rate limitation can be mitigated because the effect of AC loss by the current rise was too small. Furthermore, in the case of pulsed operation; the HTS model coil is ramped from zero to the peak value in one second and back to zero current in one second, such as the operation of SMES device, the peak value of poerating current is 1.5-2 times greater than that of the thermal runaway current.

  • PDF

A Study on a Splice Method of YBCO Coated Conductors with Curvature for HTS Magnet Application (고온초전도 마그넷 적용을 위한 YBCO Coated Conductor의 곡률 접합방법 연구)

  • Kim, Hyung-Jun;Jo, Hyun-Chul;Chang, Ki-Sung;Yang, Min-Kyu;Ahn, Min-Cheol;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • In the case of designing superconducting power apparatuses using the second generation high temperature superconducting wire, it is necessary to have a tape-splicing technique to achieve low splice resistance between coated conductor (CC) tapes. In this paper, an experimental splice method between YBCO CC tapes is proposed for a coil application. Splices were performed with a 37Pb-63Sn solder. YBCO samples were fabricated with various pressures and cooling rates. Joint resistances of the spliced samples of jointed YBCO CC tapes were measured and evaluated from V-I curves. In addition, optical micrographs were obtained to analyze the cross sectional microstructure of jointed samples.

Design and manufacture of HTS current lead for 10kJ SMES (10kJ SMES용 고온초전도 전류리드의 설계 및 제작)

  • Park, Hae-Yong;Kim, Kwang-Min;Kim, Dae-Won;Kim, A-Rong;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Sim, Ki-Deok;Sohn, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.599_600
    • /
    • 2009
  • In superconducting magnetic energy storage (SMES) systems, the current leads are usually divided into two parts. Normal metals like brass or copper are often used in the first part from the room temperature to the 1st stage of the cryocooler. Their dimensions were decided to minimize the conduction heat penetration and Ohm's heat generation. The second part down to the cryogenic coil is made of high temperature superconductor (HTS). HTS current leads can reduce the conductive heat penetration because they have poor thermal conductivity and generate no Ohm's heat generation. The brass current lead and the HTS current lead were designed and fabricated for application to the 10kJ class SMES system. The HTS current lead is 300A class. The HTS current lead was stacked with 2 HTS layers using the $Bi_2Sr_2Ca_2Cu_3O_x$ (BSCCO)/Ag. In this paper, we introduce the design procedure of the current leads and discuss the test results of the current leads.

  • PDF