• 제목/요약/키워드: sebum soiled fabrics

검색결과 4건 처리시간 0.022초

초음파 세탁과 가정 세탁의 세척성과 직물변형 비교 (Comparison of Detergency and Fabric Deformation between Ultrasonic and Home Laundry)

  • 황나원;정혜원;이광우
    • 한국의류산업학회지
    • /
    • 제25권3호
    • /
    • pp.386-397
    • /
    • 2023
  • In this study, the efficacy of ultrasonic washing in cotton and wool fabrics was compared and evaluated against conventional washing in terms of cleaning properties and fabric deformation. Factors such as washing temperature, time, liquid ratio, and detergent concentration were kept varied, and the cleaning properties of sebum-soiled fabrics were assessed using different detergents such as alcohol ethoxylate, linear alkylbenzenesulfonate, and IEC 60456 Reference Detergent A*. In addition, the effects and emulsification power of enzymes and oxygen bleach were examined. To compare the cleaning properties with general washing, a launder-O-meter was used. To investigate fabric deformation during the washing process, the loosening test cloth, shrinkage test cloth, and mechanical strength test cloth were compared between ultrasonic washing machines and household drum washing machines. The results indicate that ultrasonic washing exhibits superior cleaning properties than launder-O-meter when the temperature is low and the washing time is short. Furthermore, there is less deformation and damage during the washing process. It was also observed that the activity of the detergent increases when ultrasonic waves are applied to the washing process. Considering the increasing tendency to pursue convenience and simplicity in clothing management as well as the anticipated commercialization of smart clothing with built-in electric circuits, ultrasonic laundry could serve as a new alternative to existing laundry methods.

프로테아제와 리파제가 직물의 세척에 미치는 영향 (The Effects of Protease and Lipase on the Detergency of Fabrics)

  • 이정숙;정소화
    • 한국의류산업학회지
    • /
    • 제2권4호
    • /
    • pp.339-345
    • /
    • 2000
  • The effects of protease and/or lipase on the removal of protein soil and oily soil were investigated in this study. Cotton, rayon, nylon, and PET fabrics were soiled by padding of fresh bovine blood and spotting of mixed artificial sebum evenly. The soiled fabrics were aged at $130^{\circ}C$ for 30 minutes. The fabrics were washed by using Terg-O-Tometer at various conditions. Protease and/or lipase were added in the alcohol ethoxylate (AE) detergent solution. The removal efficiency was evaluated by analysis of protein and/or oil on the fabrics before and after washing, respectively. The detergency of protein and/or oil on the fabrics was discussed with enzyme concentration, washing time, washing temperature, pH of washing solution and fiber characteristics. The hydrolysis of protease improved effectively the removal of oil as well as protein by increasing removal of protein-oil mixed soil at the same time. The effect of lipase added detergent solution was slightly shown on the removal of oil and/or protein. The removal of mixed soils from cotton fabrics was very low because of large amount of residual soils caused by the physical characteristics of cotton fiber.

  • PDF

물세탁과 드라이클리닝의 세탁성능과 형태안정성 비교 (A comparison of detergency and dimensional stability between wet cleaning and dry cleaning)

  • 곽수경;김아리;오화원;박명자
    • 한국의상디자인학회지
    • /
    • 제21권1호
    • /
    • pp.181-189
    • /
    • 2019
  • The washability, redeposition, fill power, and fabric damage of wet cleaning and dry cleaning solvents were measured to identify the optimal type of washing that would increase washability while maintaining dimensional stability. The soiled fabric is a polyester cotton blend and the types of soil were wine, blood, make-up and sebum with carbon black. Petroleum and silicone solvents were used in dry cleaning. Results from this study are as follows. First, detergency is significantly influenced by the type of washing and type of soil. Wet cleaning is superior to dry cleaning. Wet cleaning shows a strong washing performance against hydrophilic soils, whereas, dry cleaning is stronger against hydrophobic soils. Second, redeposition is significantly affected by the type of washing, fabrics, and soils. Redeposition occurred little on cotton during wet cleaning, but showed a high rate for nylon. However, when the two types of fabric were dry cleaned, redeposition occurred on both types. Third, the fill power of duck-down is very affected by the type of washing. Resilience is the best in wet cleaning; and in dry cleaning, petroleum solvents showed a higher resilience when as compared to silicone solvents. Last, the level of fabric damage to cotton fabrics is highly influenced by the type of washing. Wet cleaning damages cotton fabrics significantly more than dry cleaning. For dry cleaning, petroleum solvents damage these fabrics slightly more than silicone solvents. In conclusion, the type of soil must initially be identified to determine the optimal type of washing. Special caution is required when textiles with particulate soil and nylon are washed. When considering the resilience of duck-down clothing, wet cleaning is more appropriate than dry cleaning. Dry cleaning, especially when using silicone-based solvents, is more suitable than wet cleaning for maintaining the shape of clothing.

의류제품의 세탁조건과 지속가능성: 세탁온도와 세탁시간을 중심으로 (Sustainability of Textile Products based on Washing Conditions: Focusing on the washing temperature and washing time)

  • 윤창상;류한나;박소현
    • Human Ecology Research
    • /
    • 제56권5호
    • /
    • pp.417-424
    • /
    • 2018
  • The use stage of a textile product impacts sustainability more significantly than other stages of the product's life cycle due to repeated washing and drying. This study determines efficient washing conditions, with high detergency, to reduce energy consumption from excessive washing and improve the washing process sustainability. Detergency was measured at various washing temperatures ($20^{\circ}C$, $40^{\circ}C$, and $60^{\circ}C$) and time (10 min, 20 min, and 30 min) using standardized soiled fabrics, i.e., 100% cotton, polyester/cotton (65%/35%), and 100% polyester woven fabric soiled with pigment/sebum, carbon black/mineral oil, soot/mineral oil, cocoa, blood, and red wine. Detergency at the washing condition of $20^{\circ}C$ and 30 min was higher than that at $40^{\circ}C$ and 10 min. In addition, detergency at the condition of $40^{\circ}C$ and 30 min was also higher than that at $60^{\circ}C$ and 10 minutes. This may be because a reduced washing effect at low washing temperatures was complemented by increased mechanical action over a long time. Further, washing temperature and time, with the same detergency, differed based on the type of fiber and soil. Also, the influence of a detergent on the detergency depends on the type of soil. The results suggest that energy and detergent have been consumed more than necessary in actual laundry. According to each type of fiber and soil, washing conditions designed to reduce the energy consumption of the washing process while maintaining the same detergency, were determined.