• Title/Summary/Keyword: seaweed biomass

Search Result 97, Processing Time 0.019 seconds

Seaweed Biomass Resources in Korea (한국의 해조류 바이오매스자원 현황)

  • Lee, Shin-Youb;Ahn, Jae-Woo;Hwang, Hyeong-Jin;Lee, Sun-Bok
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.267-276
    • /
    • 2011
  • There is a growing worldwide interest in the potential of marine biomass as an environmentally friendly and economically sustainable resource. Due to the great lack of comprehensive information about domestic seaweed resources, this study aimed to analyze the existing literature on the production and types of domestic seaweed species. Based on this data the possibilities of industrial use of domestic seaweed for the production of biofuels and bioplastics had been assessed. Our review took into account the seaweed species on domestic coasts as well as the species currently in great production via seaweed farming. Due to their wide distribution, their status as farmed crops, and the likelihood of securing their reliable supply, Codium fragile, Hizikia fuciformis, and Gelidium amansii were deemed to be the most appropriate candidates for domestic industrial use. The industrial potential of seaweed biomass was also explored by comparing the predicted amount of biomass necessary to replace current gasoline and plastics use with currently available farming space. The results of our study imply that once a steady and adequate supply of the proper kinds of seaweed can be secured through seaweed farming, there is a great potential for the development of new seaweed-based biofuels and bioplastics industries in Korea.

Temporal Variations in Seaweed Biomass and Coverage in Korean Coasts: Ongdo, Chungnam

  • Wan, Xiao Qin;Park, Hyang-Ha;Yoo, Hyun-Il;Choi, Han-Gil
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.130-137
    • /
    • 2009
  • Temporal variations of seaweed biomass and coverage were seasonally examined at Ongdo in the Yellow Sea, Korea from August 2006 to April 2008. Average seaweed biomass was 245.79 g/$m^2$ in wet weight and coverage was 16.49% with seasonal variations from 13.97% in spring to 18.55% in autumn. Seaweeds were distributed across the shore gradient from the high intertidal to 10m depth in the subtidal zone. Biomass was always higher in the subtidal zone (310.24 g/$m^2$) than in the intertidal zone (181.35 g/$m^2$). Of total seaweed biomass, 76.52% (first year) and 80.32% (second year) occurred from the low intertidal zone, down to depth of 1 to 5m. Gelidium amansii had the highest importance value and biomass, and sub dominant species were Chondrus ocellatus and Chondria crassicaulis. Coarsely-branched seaweeds comprised the highest proportion of biomass (214.84 g/$m^2$, or 87.41% of the total biomss). Seasonal variations in algal biomass were largely explained by fluctuations in the biomass of coarsely-branched and thick-leathery forms. In conclusion, seaweed biomass of Ongdo shore was very low because of perennial G. amansii showing low biomass as compared to kelp or Sargassum spp. However, these results indicate Ongdo is good place to grow seaweeds because coarsely-branched form seaweeds including G. amansii are dominant at unpolluted and clean environment.

Development of The Automation System for Seaweed Biomass Mass Production (바이오매스용 해조류 대량 양식을 위한 자동화 시스템 개발)

  • Choi, Kook-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.351-359
    • /
    • 2020
  • The algae biomass is considered as one of the potential sources of ocean renewable energy because it can be easily mass-produced with abundant sunshine in the vast ocean space. However, the practical use of the biomass has been hindered by the lack of efficient and cost-effective harvesting and maintenance system so far. The algae biomass aquaculture systems are installed in far offshore locations in much larger scales compared to the conventional aquaculture systems so that the automatic seaweed planting and harvesting system needs to operate in heavy sea conditions in far offshore location. In this research, we develop a concept design of a mega-scaled aquaculture system and an automatic seaweed planting and harvesting system, which can operate in heavy seas and mass-produce the algae biomass.

Seasonal Variability of Seaweed Biomass along the Vertical Shore Gradients of Nachido and Odo Islands, the Yellow Sea, Korea

  • Kim, Bo-Yeon;Kim, Won-Sin;Choi, Han-Gil
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.324-331
    • /
    • 2010
  • Seasonal variation in seaweed biomass was examined along vertical shore gradients on the rocky shores of Nachido and Odo Islands, the Yellow Sea, Korea, from August 2007 to April 2008. The average annual biomass of seaweed was 404.07 g wet wt/$m^2$, with seasonal variation from 232.61 g in the spring to 754.90 g wet wt/$m^2$ in the summer at Nachido Island. At Odo Island, average biomass was 270.82 g wet wt/$m^2$ and ranged from 48.35 g in the winter to 451.66 g wet wt/$m^2$ in the spring. Seaweed biomass exhibited an even distribution across the shore gradient from the high intertidal zone to -5 m depth at Nachido Island, whereas seaweed biomass was concentrated from the mid intertidal zone to -1 m depth in the subtidal zone at Odo Island. Sargassum thunbergii was the most dominant species, occupying 28.24% (114.12 g wet wt/$m^2$) and 36.57% (99.05 g wet wt/$m^2$) of total biomass at Nachido and Odo Islands, respectively. Subdominant seaweed species was Gelidium amansii, comprising 15.23% (61.52 g wet wt/$m^2$) and 14.70% (39.82 g wet wt/$m^2$) of total biomass at Nachido and Odo Islands, respectively. Dominant functional group was the coarsely branched-form group, which grows under moderate environmental conditions and comprised 93.34% (377.15 g wet wt/$m^2$) and 66.96% (181.35-g wet wt/$m^2$) of total biomass at Nachido and Odo Islands, respectively. Percentage biomass of sheet-form seaweeds growing at relatively disturbed and polluted areas was approximately 20.83% (56.40 g wet wt/$m^2$) of total biomass along the Odo rocky shore. Based on the biomass and functional-form composition of seaweeds, we concluded that Nachido Island provides better environmental conditions than does Odo Island. In addition, the vertical distribution and dominant species of seaweeds on the two islands were very similar, but the functional-form composition of seaweeds at Nachido Island differed slightly from that at Odo Island.

Seasonal Variability of Marine Algal Flora and Community Structure at Gumgap, Jindo, on the Southwestern Coast of Korea (한국 남서해안 진도군 금갑의 해조상 및 군집구조의 계절 변화)

  • Yoo, Hyun-Il;Heo, Jin-Suk;Choi, Han-Gil
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.1
    • /
    • pp.300-307
    • /
    • 2015
  • Seasonal variation in marine macroalgal community structure was examined at the intertidal zones of Geumgap, Jindo, Korea, from October 2013 to August 2014. In total, 56 macroalgal species were identified, including 9 green, 12 brown, and 35 red algae. Annual seaweed biomass was 548.96 g wet wt. /$m^2$ with seasonal range between 371.08 g wet wt. /$m^2$ at summer and 32.91 g wet wt. /$m^2$ at winter. The dominant seaweed in terms of biomass was Sargassum thunbergii and subdominant species were Gelidium elegans, Sargassum fusiforme, and Ishige okamurae. The vertical distribution of seaweeds from the upper to lower intertidal zones was Gloiopeltis spp., Ulva spp.- S. thunbergii, S. fusiforme, Ishige okamurae - S. thunbergii, S. fusiforme, G. elegans. Annual seaweed coverage, richness index (R), evenness index (J'), and diversity index (H') values were 27.95%, 6.10, 0.38, and 1.38, respectively. Coarsely branched form was the most dominant functional group in terms of species number and biomass among benthic macroalgal species.

A Study on Long-term Monitoring of Seaweed Flora and Community Structure at Hakampo, Western Coast of Korea (한국 서해안 학암포 해조상 및 군집구조의 장기모니터링 연구)

  • Heo, Jin Suk;Han, Su Jin;Choi, Han Gil;Nam, Ki Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.969-976
    • /
    • 2015
  • Macroalgal community structure was seasonally examined at Hakampo (Taean) in western coast of Korea from February 2007 to October 2010. Also, the effects of "Hebei Spirit" oil spill on the seaweed community structure were evaluated. A total of 101 macroalgal species were identified, comprising 12 green, 18 brown and 71 red algae. Species richness ranged 58-65 species with maximal in 2008 and minimal in 2009. Seaweed biomass ranged $75.81-102.06g\;dry\;wt./m^2$ (mean, $88.78g/m^2$) with maximal in 2008 and minimal in 2010. Vertical distribution from the high to low intertidal zone was Neorhodomela aculeata and Polyopes affinis; Corallina pilulifera and Chondrus ocellatus; Sargassum thunbergii and Ulva australis. Coarsely-branched seaweeds comprised the highest proportion of biomass ($37.17g/m^2$, or 41.86% of the total biomass) and ecological state group I (ESG I) seaweed biomass was between 81.67-85.44%. Also, ephemeral macroalgae including Ulva species sharply increased in species number and biomass within 1-2 year from the "Hebei Sprit" oil spill in the mid and low intertidal zone. Hakampo rocky shore is still good condition as evaluated based on macroalgal species number, biomass, and composition in functional form and ESG I seaweeds.

Temporal Variations of Seaweed Biomass in Korean Coasts: Munseom, Jeju Island (한국연안 해조류 생물량의 연간 변동 양상: 제주도 문섬지역)

  • Ko, Young-Wook;Sung, Gun-Hee;Yi, Chang-Ho;Kim, Hyun-Hee;Choi, Dong-Mun;Ko, Yong-Deok;Lee, Wook-Jae;Koh, Hyoung-Bum;Oak, Jung-Hyun;Chung, Ik-Kyo;Kim, Jeong-Ha
    • ALGAE
    • /
    • v.23 no.4
    • /
    • pp.295-300
    • /
    • 2008
  • Seaweed biomass was estimated using a nondestructive method in the rocky subtidal zones in Munseom, Jeju Island, Korea from July 2006 to April 2008. Seasonal samplings were done at the depth of 1, 5, 10 m using 50 x 50 cm quadrat. Mean biomass was comprised of 2,784 g wet wt m$^{-2}$ and the biomass values varied seasonally from 1,176 g wet wt m$^{-2}$ to 4,217 g wet wt m$^{-2}$ with the highest point in April. Biomass reached maximum at 5 m depth in spring, but was shifted to 10 m depth in summer. Common seaweeds appeared year round in Munseom were Codium minus, Ecklonia cava, Sargassum spp., articulated corallines and Plocamium telfairiae. Among them, E. cava showed the highest biomass (average of 1,288 g wet wt m$^{-2}$), comprising 4% of total biomass. Only 12 species’' biomass covered 98% of total value, which indicated the contribution of few common species to algal community. Seaweed biomass in Munseom represented one of the highest values in coastal regions in Korea.

Seasonal Variation in Subtidal Seaweed Community Structure at Hajung, on the Southeast Coast of Korea (동해안 남부 하정 연안의 조하대 해조류 군집구조의 계절적 변화)

  • Kim, Young-Dae;Park, Mi-Seon;Yoo, Hyun-Il;Min, Byung-Hwa;Moon, Tae-Seok;Choi, Han-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.740-746
    • /
    • 2011
  • Subtidal benthic macroalgal flora and community structure on barren grounds were examined seasonally along vertical shore gradients on the rocky shore of Hajung, Pohang, on the southeast coast of Korea, from February 2005 to November 2006. Twenty-six seaweed species were identified, including 5 green, 7 brown, and 14 red algae. The number of seaweed species ranged between 7 and 17 among seasons and between 13 and 20 species were found in vertical gradients along the shore. Over the study period, average seaweed biomass (g wet wt/$m^2$) was 299.88 g and it ranged seasonally from 120.99 to 620.00 g. Seaweed biomass declined with increasing seawater depth and ranged between 323.06 and 593.68 g. The dominant seaweed species, in terms of biomass, were Desmarestia ligulata and Sargassum honeri, which grew at depths between 5 and 10 m. The red alga Delisea pulchra was also abundant at a depth of 15 m. No seasonal patterns were found in community indices. Along vertical shore gradients, community indices showed different patterns; the dominance index increased and the richness, evenness, and diversity indices decreased with seawater depth.

Temporal Variations in Seaweed Biomass in Korean Coasts: Woejodo and Jusamdo, Jeonbuk (한국연안 해조류 생물량의 연간 변동 양상: 전북 외조도와 주삼도 지역)

  • Choi, Han-Gil;Lee, Ki-Hun;Wan, Xiao Qin;Yoo, Hyun-Il;Park, Hyang-Ha;Kim, Jeong-Ha;Chung, Ik-Kyo
    • ALGAE
    • /
    • v.23 no.4
    • /
    • pp.335-342
    • /
    • 2008
  • Seasonal and vertical variations of seaweed biomass were examined at Woejodo and Jusamdo of western sea, Korea from July 2006 to April 2007. Annual seaweed biomass was 198.27 g m$^{-2}$ in wet weight at Woejodo and 417.34 g m$^{-2}$ at Jusamdo, respectively and biomass of intertidal zone was greater than that of subtidal zone at Jusamdo sites. Seaweeds distributed vertically from mid intertidal to 5 m of subtidal zone at Woejodo and from high intertidal to 10m of subtidal zone at Jusamdo. Seaweed biomass and species number were maximal at lower intertidal zone (27 species, 365.43 g m$^{-2}$) of Woejodo and at mid intertidal zone (26 species, 684.18 g m$^{-2}$) of Jusamdo. Seasonal biomass varied from 136.73g m$^{-2}$ in autumn to 249.33 g m$^{-2}$ in winter at Woejodo and from 353.37 g m$^{-2}$ in autumn to 482.07 g m$^{-2}$ in summer at Jusamdo. Dominant species was Sargassum thunbergii showing highest annual biomass (Woejodo, 94.68 g m$^{-2}$ Jusamdo, 228.59 g m$^{-2}$) among all seaweeds and finding at various shore levels during the study period. Subdominant species were Corallina pilulifera and Gracilaria textorii at Woejodo, and were Sargassum fusiformis and Chondria crassicaulis at Jusamdo. Thus, we can conclude that Jusamdo shore is better place than Woejodo based on seaweed biomass and vertical distribution, and S. thunbergii is the representative species of the two islands.

Estimation for Seaweed Biomass Using Regression: A Methodological Approach (회귀분석을 이용한 해조류 생물량 측정을 위한 방법론)

  • Ko, Young-Wook;Sung, Gun-Hee;Kim, Jeong-Ha
    • ALGAE
    • /
    • v.23 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • To estimate seaweed biomass or standing crop, a nondestructive sampling can be beneficial because of not much destroying living plants and saving time in field works. We suggest a methodological procedure to estimate seaweed biomass per unit area in marine benthic habitats by using species-specific regression equations. Percent cover data are required from the field samplings for most species to convert them to weight data. However, for tall macroalgae such as kelps we need density data and their size (e.g., size class for subtidal kelps) of individuals. We propose that the field sampling should be done with 5 replicates of 50 cm x 50 cm quadrat at three zones of intertidals (upper, middle, lower) and three depth points (1, 5, 10 m) in subtidals. To obtain a reliable regression equation for a species, a substantial number of replicate is necessary from destructive samplings. The regression equation of a species can be further specified by different locality and different season, especially for the species with variable morphology temporally and spatially. Example estimation carried out in Onpyung, Jeju Island, Korea is provided to compare estimated values with real weight data.