• Title/Summary/Keyword: seaweed bead

Search Result 6, Processing Time 0.022 seconds

Eletron Microscopic Observation of Calcium-Acetylated Seaweed Alginate Gel

  • Jin Woo Lee
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.45-49
    • /
    • 1999
  • Seaweed alginate was acetylated by activated carbon immobilized Pseudomonas syringae in a fluidized bed, up-flow reactor. The acetylation degree of seaweed alginate was about 30%. Calcium-acetylated seaweed alginate gel bead was made and compared to calcium-seaweed alginate gel bead by the scanning electron microscopy (SEM). Structural difference of two gel beads may results from increased viscosity and decreased affinity of acetylated seaweed alginate for calcium ion. On the basis of interior and exterior structure of calcium-acetylated seaweed alginate gels and property of acetylated seaweed alginate, it seems that acetylated seaweed alginate is used for the supporter for electrophoresis and packing materials for liquid chromatography and gel filtration.

  • PDF

A Study on Foodstuff Preservation of Antioxidant Beads Using Oyster Shell and Seaweed Pulp (굴 패각과 해조펄프를 이용한 항산화 비드의 식품 보존에 관한 연구)

  • Ryu, Soung-Ryual
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.599-609
    • /
    • 2012
  • The objective of this research is to reuse and recycle the oyster shell wastes as a useful of antioxidant beads for foodstuff preservation through the treatment of oyster shell and seaweed pulp. This research is divided into two parts. In the first, designing and preparation of pilot scale condition was accomplished. The second part dealt with establishing the optimized manufacturing condition for [A],[B],[C-a],[C-b] compounds, and analyzing these products. The pilot scale preparation was composed of modify synthesized seaweed pulp / Cl-starch and it's various bead form were prepared with various weight ratios using polar protic solvents. In addition, with increased seaweed pulp content in the blends, antibacterial property values of seaweed pulp/Ag-oyster shell blend was decreased, however, the antioxidant and bead's solidity properties increased.

Preparation of Seaweed Calcium Microparticles by Wet-grinding Process and their Particle Size Distribution Analysis (초미세습식분쇄공정의 공정변수에 따른 해조칼슘의 입자크기 분석)

  • Han, Min-Woo;Youn, Kwang-Sup
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.269-274
    • /
    • 2009
  • The main objective of this study was to establish optimum condition of wet grinding process for manufacturing microparticulated seaweed calcium. Process parameters such as concentration of forming agent, rotor speed, bead size, feed rate, and grinding time were adapted during wet-grinding of seaweed calcium. The particle size range of the raw seaweed calcium was 10-20 $\mu$m. The calcium particles were reduced to under 1 $\mu$m as nano scale after grinding. Gum arabic was suitable for forming agent and 5%(w/v) concentration was the most effective in grinding efficiency. A wet-grinding process operated at 4,000 rpm rotor speed, 0,4 mm bead size, and 0.4 L/hr feeding rate, respectively, produced less than 600 mm(>>90%)-sized particles. In batch systems, 8 cycles of grinding showed higher efficiency, but 20 min of grinding time in continuous processing was more efficient to reduce particle size than the batch processing. Based on the result, the optimum conditions of the wet grinding process were established: operation time of 20 minutes, rotor speed of 4,000 rpm, bead size of 0.4 mm, feed rate of 40 mL/min and 30% mixing ration with water. The size of the resulting ultra fine calcium particles ranged between 40 and 660 mm.

Removal Characteristics of Lead by Immobilizing Agents and Immobilized Seaweed (고정화제와 고정화된 해조류에 의한 납의 제거 특성)

  • 이학성;서정호;서근학
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.83-87
    • /
    • 2001
  • In this study, the characteristics of lead removal by PVA and alginate bead which used widely as immobilizing agents were investigated, and the difference of removal amounts between pure PVA/alginate bead and Sargassum thunbergii immobilized bead was studied. All PVA beads, pure and S. thunbergii immobilized, reached an equilibrium state in about 1 hour, and S. thunbergii immobilized bead adsorbed more lead than pure one. But in the case of alginate beads, they needed much time, about 5 hours, to reach an equilibrium state, and adsorbed lead four times higher than PVA beads. Therefore, it was considered that alginate beads had more mass transfer resistance and function groups which adsorb lead such as hydroxyl, carboxyl and etc. than PVA bead. To examine the continuous usage of alginate beads, the process of adsorption/desorption of lead was conducted repeatedly. As the process proceeded, the amounts of lead adsorption decrease, so it was indicated that the non-desorbed lead from alginate bead at first adsorption/desorption process remained constantly.

  • PDF

Sustained Release of Ibuprofen from Sodium Alginate Beads (알긴산나트륨을 이용한 이부프로펜의 용출지연)

  • Kwon, Sang-Keun;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.153-161
    • /
    • 1995
  • Alginic acid is a hydrophilic , colloidal polysaccharide obtained from cell wall of seaweed or brown algae and has a broad range of applications. Alginlc acid becomes alginate gel bead due to its cation-induced gelation. Dried alginate beads can be reswollen according to environmental pH. The purpose of this paper is to explore the possible applicability of alginate beads as an oral controlled release system of ibuprofen. In this experiment ibuprofen was incorporated in alginate beads and alginate beads were treated with various methods. Ibuprofen release from alginate beads in phosphate buffer (pH 7.4) was laster than in distilled water and dilute HCl. The release of ibuprofen was more sustained in bead than simple mixture and coprecipitate of ibuprofen and sodium alginate. The dissolution rate of ibuprofen was decreased in using of bead that hardened with formaldehyde. The dissolution rate of the drug from the bead was the fastest in 12 hour dried beads, 1.5%-sodium alginate concentration and 1%-calcium chloride concentration. Sodium alginate bead can be used as a sustaind release drug delivery system of water-insoluble drugs.

  • PDF

Removal of Inorganic Arsenic from Steamed Hijiki Sargassum fusiforme Concentrate Using Activated Carbon (활성탄을 이용한 톳(Sargassum fusiforme) 자숙농축액 내 무기비소 저감 기술)

  • Kang, Eun Hye;Lee, Ka Jeong;Jo, Mi Ra;Yu, Hongsik;Son, Kwang Tae;Yoon, Minchul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.561-567
    • /
    • 2021
  • The edible sargasso seaweed hijiki Sargassum fusiforme is known to have high concentration of arsenic, which is a threat to human health, particularly due to inorganic arsenic. In this study, various methods were used to remove inorganic arsenic from steamed hijiki concentrate. The highest concentration of arsenate [As(V)] in both raw and processed hijiki during steamed hijiki manufacturing process was within the range of 8.213-14.356 mg/kg, and it is a potential source of inorganic arsenic, which can result in re-contamination and cause environmental pollution. The removal efficiencies of the various removal methods were within the range of 57.3-83.4%, and 19.0% reduction was achieved using activated carbon and alginate bead. Further, activated carbon showed the best adsorption effect of inorganic arsenic. Therefore, we suggest that activated carbon is a suitable efficient method for removing inorganic arsenic and has low operational costs in field applicability.