• Title/Summary/Keyword: seawater mineral resource

Search Result 12, Processing Time 0.02 seconds

R&D Trends of Rare Metals Recovery from Seawater (해수(海水)로부터 희유금속(稀有金屬) 회수(回收) 연구동향(硏究動向))

  • Kim, Jong-Heon;Noh, Kyung-Ran;Kim, Sang-Woo;Choi, Sung-Bae;Kil, Sang-Cheol
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.73-80
    • /
    • 2013
  • Marine mineral resources are classified into submarine and seawater mineral resources. In seawater, huge amounts of useful minerals, such as uranium, lithium, magnesium, aluminum, zinc, iron, silver, copper, vanadium, nickel, titanium and cobalt are present. If the rare metals recovery technology from seawater is developed, the commercialization of the precess will be possible. For the 21st century, countries rich in resoures tend to weaponize the resources, according to the depletion of reserves and quality degradation of metal resources in the land. Therefore, Korea that relies on imports for most of the metal resources, should focus on the research and development of the rare metals recovery technology from seawater by using the geographical characteristics of the country that is on three sea-sides.

Relationship Between the Groundwater Resistivity and NaCl Equivalent Salinity in Western and Southern Coastal Areas, Korea (국내 서.남해 해안지역 지하수의 전기비저항과 등가 NaCl 염분도와의 관계)

  • Hwang, Se-Ho;Park, Kwon-Gyu;Shin, Je-Hyun;Lee, Sang-Kyu
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.361-368
    • /
    • 2007
  • In this paper, we suggested the relationship between resistivity of coastal groundwater and NaCl equivalent salinity for the quantitative interpretation the results of surface/borehole resistivity and electromagnetic data. 38 groundwater samples having electrical conductivity higher than about 1,000 ${\mu}S/cm$ were analyzed to derive the empirical relationship between groundwater resistivity and NaCl equivalent salinity. We used Schlumberger chart GEN-8 to convert ion concentration from hydrochemical analysis to the equivalent NaCl salinity, and the portable meter to measure the in situ electrical conductivity of groundwater samples. From the hydrochemical analysis, relationship between the groundwater resistivity $(R_w)$ and equivalent NaCl salinity (Eq_NaCl) is expressed as Eq_NaCl=$5935.3551{\times}R_w^{-1.0993}$, and relationship between the groundwater electrical conductivity (EC) and total dissolved solids (TDS) is expressed as TDS=0.721*EC. We believe these relationships are very useful to assess the seawater intrusion in western and southern coastal area.

Analysis of Groundwater Level Changes Due to Earthquake in Jeju Island (For the Indonesian Earthquake with Magnitude 7.7 in 2010) (지진에 의한 제주도 지하수위 변동 분석 (2010년 인도네시아 규모 7.7 지진))

  • Lee, Soo-Hyoung;Hamm, Se-Yeong;Ha, Kyoo-Chul;Kim, Yong-Cheol;Cheong, Beom-Keun;Ko, Kyung-Seok;Koh, Gi-Won;Kim, Gee-Pyo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.41-51
    • /
    • 2011
  • This study was conducted to investigate the relationship between groundwater level change and a large earthquake using the data of groundwater and seawater intrusion monitoring wells in Jeju Island. Groundwater level data from 13 observation wells were analyzed with a large earthquake. The Earthquake occurred at Sumatra, Indonesia (Mw = 7.7) on 13 June 2010, and groundwater level anomalies which seems to be related to the Earthquake were found in 6 monitoring wells. They lasted for approximately 16~27 minutes and the range of groundwater level fluctuations were about 1.4~2.4 cm. Coefficient of determination values for relationship between groundwater level change and transmissivity, and response time were calculated to be $R^2$ = 0.76 and $R^2$ = 0.96, respectively. The study also indicates that the high transmissivity of aquifer showed the high goundwater level changes and longer response time.

A study on the comprehensive resources utilization of seawater by the vacuum heat transfer technology (진공열전달기술에 의한 해수의 종합자원화에 관한 연구)

  • Shao, Yude;Mun, Soo-Beom;Kim, Kyung-geun;Choi, Bu-Hong;Lee, Seo-Yeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.685-695
    • /
    • 2015
  • Mud, iron oxide, plaster, salt, minerals, and dissolved metals are sequentially deposited in accordance with the increasing concentration of seawater. In this paper, by using the physical characteristics of the seawater, we propose a new vacuum heat-transfer technology to subsequently obtain the proportion of the dissolved components in a cost-effective manner. Based on the vacuum heat-transfer characteristics of seawater, we comprehensively divide the seawater resource processes into the following four processes: (1) the salt concentration process to the saturation concentration, (2) crystallization process for salt formation, (3) mineral precipitation, and (4) remaining of dissolved metals.

Composition of Rare Earth Elements in Northeast Pacific Surface Sediments, and their Potential as Rare Earth Elements Resources (북동태평양 Clarion-Clipperton 해역 표층 퇴적물의 희토류 조성 및 희토류 광상으로서의 잠재성)

  • Seo, Inah;Pak, Sang Joon;Kiseong, Hyeong;Kong, Gee-Soo;Kim, Jonguk
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.383-394
    • /
    • 2014
  • The surface sediments from the manganese nodule exploration area of Korea in the Clarion-Clipperton fracture zone were investigated to understand the resource potential of and emplacement mechanism for rare earth elements (REEs). The sediments are categorized into three lithological units (Unit I, II and III from top to bottom), but into two groups (Unit I/II and Unit III) based on the distribution pattern of REEs. The distribution pattern of REEs in Unit I/II is similar to that of Post-Archean Australian Shale (PAAS), but shows a negative Ce anomaly and enrichment in heavy REEs (HREEs). In Unit III, the HREE enrichment and Ce anomaly is much more remarkable than Unit I/II when normalized to PAAS, which are interpreted as resulting from the absorption of REEs from seawater by Fe oxyhydroxides that were transported along the buoyant plume from remotely-located hydrothermal vents. It is supported by the PAAS-normalized REE pattern of Unit III which is similar to those of seawater and East Pacific Rise sediments. Meanwhile, the PAAS-normalized REE pattern of Unit I/II is explained by the 4:1 mixing of terrestrial eolian sediment and Unit III from each, indicating the much smaller contribution of hydrothermal origin material to Unit I/II. The studied sediments have the potentiality of a low-grade and large tonnage REE resource. However, the mining of REE-bearing sediment needs a large size extra collecting, lifting and treatment system to dress and refine low-grade sediments if the sediment is exploited with manganese nodules. It is economically infeasible to develop low-grade REE sediments at this moment in time because the exploitation of REE-bearing sediments with manganese nodules increase the mining cost.

Development of Technical and Economic Evaluation Model for Seafloor Massive Sulfide Deposits (해저열수광상 기술.경제성평가 모델 개발)

  • Park, Se-Hun;Park, Seong-Wook;Kwon, Suk-Jae
    • Ocean and Polar Research
    • /
    • v.28 no.2
    • /
    • pp.187-199
    • /
    • 2006
  • The Kuroko-type seafloor massive sulfide deposits found in the western Pacific have been considered to have potentials for economic recovery of Au, Ag, Cu, Zn, and Pb. In this study, a preliminary model was developed for the technical and economic evaluation of them. The FRSC site on Lau Basin in the Tonga EEZ was selected as a target. In this study, no construction In for the metallurgical processing subsystem was accounted for. Instead, it was assumed to sell the Cu, Zn, and Pb concentrates to the existing sulfide customer smelter. The low total investment costs for the development make the venture very attractive. However, the result of the economic feasibility evaluation is still less attractive with the mean metal yield of the Kuroko on land. It is considered that commercial mining may be plausible if the richer metal yields are applied to the development. Quantitative information for metal yield is necessary for a more accurate evaluation. However, the important resource potential information regarding the amount of ore body, the inside structure, and the metal yields have not yet been clarified sufficiently. h addition, the flotation of ore body using seawater has not been tested yet. It is necessary to solve these problems through the experimental R&D and a survey.

Correcting the Sound Velocity of the Sediments in the Southwestern Part of the East Sea, Korea (동해 남서해역 퇴적물의 음파전달속도 보정)

  • Kim, Sora;Kim, Daechoul;Lee, Gwang-Soo
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.408-419
    • /
    • 2016
  • To investigate the in-situ sound velocity of sediment in the southwestern part of the East Sea, the laboratory sound velocity was measured using the pulse transmission technique. The sediment sound velocity measured in laboratory was corrected to in-situ sound velocity based on the seafloor temperature, seawater sound velocity, Kim et al. (2004) model, and Hamilton (1980) model. The distribution of the corrected in-situ sound velocity applying Kim et al. (2004) and Hamilton (1980) models reflects the characteristics of sediments of the study area and shows a similar distribution pattern. The correction for in-situ sound velocity was mostly influenced by seafloor temperature. Then, correction of sound velocity using seafloor sediment temperature data should be accomplished for conversion of laboratory data to in-situ sound velocity.

Application of Microwave-HClO Leaching for On-board Recovery of Au in Hydrothermal Minerals (열수광물내 Au의 선상회수를 위한 마이크로웨이브-차아염소산 용출 적용성)

  • Kim, Hyun Soo;Myung, Eun Ji;Kim, Min Sung;Lee, Sung-Jae;Park, Cheon-young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.243-250
    • /
    • 2020
  • The purpose of this study is to find out the possibility of applying microwave-hypochlorous acid leaching to effectively leaching Au in hydrothermal minerals on board. The comparative leaching experiment were confirmed that the leaching rate of Au with(T1)/with out(T2) of microwave nitric acid leaching. In addition, the leaching rate of Au on the conventional leaching by mechanical agitation(T3) and microwave leaching was compared. The result of microwave nitric acid leaching(solid-liquid ratio; 10%, leaching temperature; 90 ℃, leaching time; 20 min) confined that the metal leaching rate was high in the order of As>Pb>Cu>Fe>Zn, and the content of Au in the leaching residue was increased from 33.77 g/ton to 60.02 g/ton. As a result of the comparative leaching experiment using a chloride solvent, the dissolution rate of Au was high in the order of T1(61.10%)>T3(53.30%)>T2(17.30%). Therefore, chloride, which can be manufactured using seawater and that can be recycled by collecting chlorine gas generated in the leaching process, is expected to be an optimal solvent for Au leaching. In addition, the application of microwaves is believed to be effective in terms of time, efficiency and energy.

Safety and Physicochemical Quality Evaluation of Processed Meat Products Using Deep Sea Water (해양심층수를 활용하여 제조한 식육가공품의 안전성 및 이화학적 품질평가)

  • Kim, Seong-Yeon;Park, Young-Sig;Park, Kun-Taek
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.460-465
    • /
    • 2018
  • Deep sea water is deeper than 200 m in depth and maintains cool temperatures. It is clean seawater not contaminated by E. coli and other general bacteria. Because deep sea water is a recyclable resource with high industrial value, activities for commercial use are vigorously developing. We investigated safety, quality characteristics, and mineral contents of prototype products using deep sea water as a substitute for a curing agent and compared it with existing commercially processed products. This study examined the potential of deep sea water as an alternative to curing agent solution. As a result, safety and quality characteristics of processed meat products with deep sea water were not different from commercially processed meat products, but mineral contents were higher in processed meat products with deep sea water. Deep sea water could be widely used as purity salt and purity minerals that can replace chemical substances such as chemical salts. A new, active food market using deep sea water will emerge in the near future.