• Title/Summary/Keyword: seawater intrusion monitoring network

Search Result 4, Processing Time 0.017 seconds

Rural Groundwater Monitoring Network in Korea (농어촌지하수 관측망)

  • Lee, Byung Sun;Kim, Young In;Choi, Kwang-Jun;Song, Sung-Ho;Kim, Jin Ho;Woo, Dong Kwang;Seol, Min Ku;Park, Ki Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2014
  • Rural groundwater monitoring network has been managed by Korea Rural Community Corporation (KRC) since 1998. The network consists of two kinds of subnetworks; rural groundwater management network (RGMN) and seawater intrusion monitoring network (SIMN). RGMN has been operated to promote a sound and sustainable development of rural groundwater within the concerned area for groundwater quality and quantity. SIMN has been operated to protect the crops against hazards by the saline water in coastal areas in which the shortage of irrigation water become a main problem for agriculture. Currently, a total of 283 monitoring wells has been installed; 147 wells in 79 municipalities for RGMN and 136 wells in 52 ones for SIMN, respectively. Two subnetworks commonly monitor three hydrophysical properties (groundwater level, temperature, and electric conductivity) every hour. Monitored data are automatically transferred to the management center located in KRC. Data are opened to the public throughout website named to be the Rural Groundwater Net (www.groundwater.or.kr). Annual reports involving well logging and hydrochemical data of RGMN and SIMN have been published and distributed to the rural water management office of each municipalities. In addition, anyone who concerns about RGMN an SIMN can freely download these reports throughout the Rural Groundwater Net as well.

Evaluation of Long-term Data Obtained from Seawater Intrusion Monitoring Network using Variation Type Analysis (변동유형 분석법을 이용한 해수침투 관측망 자료 평가)

  • Song, Sung-Ho;Lee, Jin-Yong;Yi, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.28 no.4
    • /
    • pp.478-490
    • /
    • 2007
  • With groundwater data of seawater intrusion monitoring network in coastal areas of Korea's main land, we analyzed types of seawater intrusion through the coastal aquifer. The data including groundwater level, temperature and electrical conductivity obtained from 45 monitoring wells at 25 watershed regions were evaluated. Based on statistical analysis, correlation analysis and variation type analysis, groundwater levels were mainly affected by rainfall and artificial pumping. About 78% of the monitoring wells showed average temperature higher than $15^{\circ}C$ and about 58% of them showed minimum variations less than $0.2^{\circ}C$. Electrical conductivities showed a large magnitude of variation and irregular characteristics compared with groundwater levels and temperatures. Average electrical conductivities lower than $2,000\;{\mu}S/cm$ were observed at 28 monitoring wells while those of higher than $10,000\;{\mu}S/cm$ were done at 9 monitoring wells. From the cross-correlation analysis, groundwater levels were mostly affected by precipitation while temperature and electrical conductivity showed very low correlation. Meanwhile tidal variations strongly affected the groundwater levels comparing to precipitation. We classified the long-term monitoring data according to variation types such as constant process, linear trend, cyclic variation, impulse, step function and ramp. Impulse type was dominant for variations of groundwater level, which was largely affected by rainfall or artificial pumping, the constant process was dominant for temperature. Compared with groundwater level and temperature, electrical conductivities showed various types like linear trend, step function and ramp. According to the discrepancy of variation characteristics for monitoring data at each well in the same region, periodical analysis of monitoring data is essentially required.

Sea Level Rise Around Jeju Island due to Global Warming and Movement of Groundwater/seawater Interface in the Eastern Part of Jeju Island (지구온난화에 따른 제주도 근해의 해수면 상승과 제주도 동부 지역 지하수의 염수대 변화)

  • Kim, Kyung-Ho;Shin, Ji-Youn;Koh, Eun-Heui;Koh, Gi-Won;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.68-79
    • /
    • 2009
  • Groundwater is the main water resource in Jeju Island because storage of surface water in reservoir is difficult in the island due to the permeable volcanic rocks. Because of this reason, the groundwater is expected to be very vulnerable to seawater intrusion by global warming, which will cause sea level rise. The long term change of mean sea level around the Korean Peninsula including Jeju Island was analyzed for this study. The sea level rise over the past 40 years was estimated to be of $2.16\;{\pm}\;1.71\;mm/yr$ around the Korean Peninsula. However, the rising trend around the eastern part of Jeju Island was more remarkable. In addition, the groundwater/seawater intrusion monitoring network operated by the Jeju Special Self-Governing Province shows that seawater intrusion becomes more prominent during dry 4-5 months in a year when the sea level increases. This implies that the fresh groundwater lens in the eastern part of Jeju Island is influenced by the sea level rise due to global warming in the long term scale.

An Interpretation of Changes in Groundwater Level and Electrical Conductivity in Monitoring Wells in Jeiu Island (제주도의 지하수 관측망 자료를 이용한 지하수위 및 전기전도도 변화 해석)

  • Lee, Jin-Yong;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.925-935
    • /
    • 2007
  • Water sources in volcanic Jeju Island are almost entirely dependent on groundwater because there are actually no perennial streams or rivers due to the permeable nature of surface soils derived from basaltic or trachytic rocks. Uncontrolled development of groundwater resulted in substantial water-level decline, groundwater pollution, and seawater intrusion in several places of the island. To maintain its sustainable groundwater, the provincial government has declared some parts of the island as the Special Groundwater Conservation/Management Area since 1994. Hence, all the activities for the groundwater development in the area should obtain official permit from relevant authorities. Furthermore, to acquire information on groundwater status, a network of groundwater monitoring was established to cover most of the low land and coastal areas with the installation of automatic monitoring systems since 2001. The analysis of the groundwater monitoring data indicated that the water levels had decreased at coastal area, especially in northern part of the island. Moreover, very high electrical conductivity (EC) levels and their increasing trends were observed in the eastern part, which was ascribable to seawater intrusion by intensive pumping in recent years. Water level decline and EC rise in the coastal area are expected to continue despite the present strict control on additional groundwater development.