• Title/Summary/Keyword: seasonal predictability

Search Result 50, Processing Time 0.023 seconds

Assessment of predictability and Bias correction of Global seasonal forecasting system version 5 (GloSea5) for water resources planning and management (수자원 계획 및 관리를 위한 GloSea5모델의 예측력 평가 및 편의보정)

  • Son, Chanyoung;Jeong, Yerim;Han, Soohee;Cho, Younghyun;Suh, Aesook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.241-241
    • /
    • 2017
  • 기후변화로 인하여 강우의 불확실성이 가중되고 홍수, 가뭄 등 물 관련 재해의 발생빈도 및 강도가 증가함에 따라 안정적인 용수공급 등 수자원 관리 및 운영에 어려움을 겪고 있어 예측기반의 수자원 계획 및 운영이 요구되고 있는 실정이다. 우리나라 기상청에서는 2010년 6월 영국기상청과 장기 계절예측시스템의 구축 및 운영에 관한 협정을 체결하였으며 2014년부터 전지구 계절예측시스템 GloSea5(Global seasonal forecasting system version 5)을 현업에 활용하고 있다. GloSea5 모델은 대기(UM), 지면(JULES), 해양(NEMO), 해빙(CICE) 모델이 커플러(OASIS)에 의해 결합된 통합 시스템으로 일단위 자료로 제공된다. 현재 수자원 분야에서는 장기예보자료가 제공되고 있음에도 불구하고 장기예보자료의 불확실성 및 수문 모형 입력자료로의 활용 어려움, 예측자료의 검증 미흡 등으로 기상청에서 제공하는 장기예보를 참고할 뿐 실제로는 과거 관측자료를 기반한 빈도해석 결과를 활용하여 댐 운영 계획을 수립하고 있는 실정이다. 따라서, 본 연구에서는 GloSea5모델에서 제공되는 일 단위 예측 강수량을 수자원 장기이수계획 및 관리에 활용하고자 GloSea5모델의 예측력을 평가하고 수치모델이 가지는 시스템 에러에 대하여 편의보정 및 지점 상세화를 수행하였다. 본 연구의 분석결과는 향후, 저수지 운영계획 및 증가하는 물수요와 불확실한 공급에 대한 의사결정 지원, 가뭄 대비를 위한 물 공급 제한 등에 활용 가능할 것으로 판단된다.

  • PDF

Performance Assessment of Monthly Ensemble Prediction Data Based on Improvement of Climate Prediction System at KMA (기상청 기후예측시스템 개선에 따른 월별 앙상블 예측자료 성능평가)

  • Ham, Hyunjun;Lee, Sang-Min;Hyun, Yu-Kyug;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.149-164
    • /
    • 2019
  • The purpose of this study is to introduce the improvement of current operational climate prediction system of KMA and to compare previous and improved that. Whereas the previous system is based on GloSea5GA3, the improved one is built on GloSea5GC2. GloSea5GC2 is a fully coupled global climate model with an atmosphere, ocean, sea-ice and land components through the coupler OASIS. This is comprised of component configurations Global Atmosphere 6.0 (GA6.0), Global Land 6.0 (GL6.0), Global Ocean 5.0 (GO5.0) and Global Sea Ice 6.0 (GSI6.0). The compositions have improved sea-ice parameters over the previous model. The model resolution is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, the predictability of each system is evaluated using by RMSE, Correlation and MSSS, and the variables are 500 hPa geopotential height (h500), 850 hPa temperature (t850) and Sea surface temperature (SST). A predictive performance shows that GloSea5GC2 is better than GloSea5GA3. For example, the RMSE of h500 of 1-month forecast is decreased from 23.89 gpm to 22.21 gpm in East Asia. For Nino3.4 area of SST, the improvements to GloSeaGC2 result in a decrease in RMSE, which become apparent over time. It can be concluded that GloSea5GC2 has a great performance for seasonal prediction.

Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping (경험적 분위사상법을 이용한 지역기후모형 기반 미국 강수 및 가뭄의 계절 예측 성능 개선)

  • Song, Chan-Yeong;Kim, So-Hee;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.637-656
    • /
    • 2021
  • The United States has been known as the world's major producer of crops such as wheat, corn, and soybeans. Therefore, using meteorological long-term forecast data to project reliable crop yields in the United States is important for planning domestic food policies. The current study is part of an effort to improve the seasonal predictability of regional-scale precipitation across the United States for estimating crop production in the country. For the purpose, a dynamic downscaling method using Weather Research and Forecasting (WRF) model is utilized. The WRF simulation covers the crop-growing period (March to October) during 2000-2020. The initial and lateral boundary conditions of WRF are derived from the Pusan National University Coupled General Circulation Model (PNU CGCM), a participant model of Asia-Pacific Economic Cooperation Climate Center (APCC) Long-Term Multi-Model Ensemble Prediction System. For bias correction of downscaled daily precipitation, empirical quantile mapping (EQM) is applied. The downscaled data set without and with correction are called WRF_UC and WRF_C, respectively. In terms of mean precipitation, the EQM effectively reduces the wet biases over most of the United States and improves the spatial correlation coefficient with observation. The daily precipitation of WRF_C shows the better performance in terms of frequency and extreme precipitation intensity compared to WRF_UC. In addition, WRF_C shows a more reasonable performance in predicting drought frequency according to intensity than WRF_UC.

Weekly Maximum Electric Load Forecasting for 104 Weeks by Seasonal ARIMA Model (계절 ARIMA 모형을 이용한 104주 주간 최대 전력수요예측)

  • Kim, Si-Yeon;Jung, Hyun-Woo;Park, Jeong-Do;Baek, Seung-Mook;Kim, Woo-Seon;Chon, Kyung-Hee;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2014
  • Accurate midterm load forecasting is essential to preventive maintenance programs and reliable demand supply programs. This paper describes a midterm load forecasting method using autoregressive integrated moving average (ARIMA) model which has been widely used in time series forecasting due to its accuracy and predictability. The various ARIMA models are examined in order to find the optimal model having minimum error of the midterm load forecasting. The proposed method is applied to forecast 104-week load pattern using the historical data in Korea. The effectiveness of the proposed method is evaluated by forecasting 104-week load from 2011 to 2012 by using historical data from 2002 to 2010.

CNN-LSTM Coupled Model for Prediction of Waterworks Operation Data

  • Cao, Kerang;Kim, Hangyung;Hwang, Chulhyun;Jung, Hoekyung
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1508-1520
    • /
    • 2018
  • In this paper, we propose an improved model to provide users with a better long-term prediction of waterworks operation data. The existing prediction models have been studied in various types of models such as multiple linear regression model while considering time, days and seasonal characteristics. But the existing model shows the rate of prediction for demand fluctuation and long-term prediction is insufficient. Particularly in the deep running model, the long-short-term memory (LSTM) model has been applied to predict data of water purification plant because its time series prediction is highly reliable. However, it is necessary to reflect the correlation among various related factors, and a supplementary model is needed to improve the long-term predictability. In this paper, convolutional neural network (CNN) model is introduced to select various input variables that have a necessary correlation and to improve long term prediction rate, thus increasing the prediction rate through the LSTM predictive value and the combined structure. In addition, a multiple linear regression model is applied to compile the predicted data of CNN and LSTM, which then confirms the data as the final predicted outcome.

Prediction Skill of Intraseasonal Monthly Temperature and Precipitation Variations for APCC Multi-Models (APCC 다중 모형 자료 기반 계절 내 월 기온 및 강수 변동 예측성)

  • Song, Chan-Yeong;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.405-420
    • /
    • 2020
  • In this study, we investigate the predictability of intraseasonal monthly temperature and precipitation variations using hindcast datasets from eight global circulation models participating in the operational multi-model ensemble (MME) seasonal prediction system of the Asia-Pacific Economic Cooperation Climate Center for the 1983~2010 period. These intraseasonal monthly variations are defined by categorical deterministic analysis. The monthly temperature and precipitation are categorized into above normal (AN), near normal (NN), and below normal (BN) based on the σ-value ± 0.43 after standardization. The nine patterns of intraseasonal monthly variation are defined by considering the changing pattern of the monthly categories for the three consecutive months. A deterministic and a probabilistic analysis are used to define intraseasonal monthly variation for the multi-model consisting of numerous ensemble members. The results show that a pattern (pattern 7), which has the same monthly categories in three consecutive months, is the most frequently occurring pattern in observation regardless of the seasons and variables. Meanwhile, the patterns (e.g., patterns 8 and 9) that have consistently increasing or decreasing trends in three consecutive months, such as BN-NN-AN or AN-NN-BN, occur rarely in observation. The MME and eight individual models generally capture pattern 7 well but rarely capture patterns 8 and 9.

Forecasting Brown Planthopper Infestation in Korea using Statistical Models based on Climatic tele-connections (기후 원격상관 기반 통계모형을 활용한 국내 벼멸구 발생 예측)

  • Kim, Kwang-Hyung;Cho, Jeapil;Lee, Yong-Hwan
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.139-148
    • /
    • 2016
  • A seasonal outlook for crop insect pests is most valuable when it provides accurate information for timely management decisions. In this study, we investigated probable tele-connections between climatic phenomena and pest infestations in Korea using a statistical method. A rice insect pest, brown planthopper (BPH), was selected because of its migration characteristics, which fits well with the concept of our statistical modelling - utilizing a long-term, multi-regional influence of selected climatic phenomena to predict a dominant biological event at certain time and place. Variables of the seasonal climate forecast from 10 climate models were used as a predictor, and annual infestation area for BPH as a predictand in the statistical analyses. The Moving Window Regression model showed high correlation between the national infestation trends of BPH in South Korea and selected tempo-spatial climatic variables along with its sequential migration path. Overall, the statistical models developed in this study showed a promising predictability for BPH infestation in Korea, although the dynamical relationships between the infestation and selected climatic phenomena need to be further elucidated.

Development of the Atomated Prediction System for Seasonal Tropical Cyclone Activity over the Western North Pacific and its Evaluation for Early Predictability (북서태평양 태풍 진로의 계절예측시스템 자동화 구축 및 조기 예측성의 검증)

  • Jin, Chun-Sil;Ho, Chang-Hoi;Park, Doo-Sun R.;Choi, Woosuk;Kim, Dasol;Lee, Jong-Ho;Chang, Ki-Ho;Kang, Ki-Ryong
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.123-130
    • /
    • 2014
  • The automated prediction system for seasonal tropical cyclone (TC) activity is established at the National Typhoon Center of the Korea Meteorological Administration (KMA) to provide effective operation and control of the system for user who lacks knowledge of the system. For automation of the system, two procedures which include subjective decisions by user are performed in advance, and their output data are provided as input data. To provide the capability to understand the operational processes for operational user, the input and output data are summarized with each process, and the directory structure is reconstructed following KMA's standard. We introduce a user interface using namelist input parameters to effectively control operational conditions which is fixed or should be manually set in the previous version of the prediction system. To operationally use early prediction which become available through the automation, its performances are evaluated according to initial condition dates. As a result, high correlations between the observed and predicted TC counts are kept for all track clusters even though advancing the initial condition date from May to January.

An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5) (기상청 현업 기후예측시스템(GloSea5)에서의 극한예측지수를 이용한 여름철 폭염 예측 성능 평가)

  • Heo, Sol-Ip;Hyun, Yu-Kyung;Ryu, Young;Kang, Hyun-Suk;Lim, Yoon-Jin;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.257-267
    • /
    • 2019
  • This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.

A Study on the Statistical Predictability of Drinking Water Qualities for Contamination Warning System (수질오염 감시체계 구축을 위한 수질 데이터의 통계적 예측 가능성 검토)

  • Park, No-Suk;Lee, Young-Joo;Chae, Seonha;Yoon, Sukmin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.469-479
    • /
    • 2015
  • This study have been conducted to analyze the feasibility of establishing Contamination Warning System(CWS) that is capable of monitoring early natural or intentional water quality accidents, and providing active and quick responses for domestic C_water supply system. In order to evaluate the water quality data set, pH, turbidity and free residual chlorine concentration data were collected and each statistical value(mean, variation, range) was calculated, then the seasonal variability of those were analyzed using the independent t-test. From the results of analyzing the distribution of outliers in the measurement data using a high-pass filter, it could be confirmed that a lot of lower outliers appeared due to data missing. In addition, linear filter model based on autoregressive model(AR(1) and AR(2)) was applied for the state estimation of each water quality data set. From the results of analyzing the variability of the autocorrelation coefficient structure according to the change of window size(6hours~48hours), at least the window size longer than 12hours should be necessary for estimating the state of water quality data satisfactorily.