• 제목/요약/키워드: seasonal forecast

검색결과 175건 처리시간 0.023초

계절 및 날씨 정보를 이용한 인공신경망 기반 전력수요 예측 알고리즘 개발 (The Artificial Neural Network based Electric Power Demand Forecast using a Season and Weather Informations)

  • 김미경;홍철의
    • 전자공학회논문지
    • /
    • 제53권1호
    • /
    • pp.71-78
    • /
    • 2016
  • 본 논문은 인공 신경망에 기반을 둔 새로운 전력 수요 예측 모델을 제시한다. 인공 신경망 입력 변수로 시간과 날씨요소를 고려하였다. 시간 요소는 하절기와 동절기 전력수요 데이터의 자기 상관계수를 측정하여 선정하였고, 날씨요소는 피어슨 상관계수를 이용하여 선정하였다. 중요한 날씨요소로는 온도와 이슬점으로 이들은 전력수요와 밀접한 상관관계를 가지고 있다. 반면에 습도, 기압, 풍속 등과 같은 날씨요소는 전력수요와의 상관관계가 높지 않게 나타나 신경망의 입력 변수에서 제외하였다. 실험결과 새로이 제안한 인공 신경망을 이용한 전력수요 모델은 시간요소 및 날씨요소와 이에 대한 가중치를 피크 전력율과 계절에 따라 차등 적용하여 높은 적중률을 보였다.

Effects of Macroeconomic Conditions and External Shocks for Port Business: Forecasting Cargo Throughput of Busan Port Using ARIMA and VEC Models

  • Nam, Hyung-Sik;D'agostini, Enrico;Kang, Dal-Won
    • 한국항해항만학회지
    • /
    • 제46권5호
    • /
    • pp.449-457
    • /
    • 2022
  • The Port of Busan is currently ranked as the seventh largest container port worldwide in terms of cargo throughput. However, port competition in the Far-East region is fierce. The growth rate of container throughput handled by the port of Busan has recently slowed down. In this study, we analyzed how economic conditions and multiple external shocks could influence cargo throughput and identified potential implications for port business. The aim of this study was to build a model to accurately forecast port throughput using the ARIMA model, which could incorporate external socio-economic shocks, and the VEC model considering causal variables having long-term effects on transshipment cargo. Findings of this study suggest that there are three main areas affecting container throughput in the port of Busan, namely the Russia-Ukraine war, the increased competition for transshipment cargo of Chinese ports, and the weaker growth rate of the Korean economy. Based on the forecast, in order for the Port of the Port of Busan to continue to grow as a logistics hub in Northeast-Asia, policy intervention is necessary to diversify the demand for transshipment cargo and maximize benefits of planned infrastructural investments.

다층퍼셉트론 기법을 이용한 ECMWF 예측자료의 강수예측 정확도 향상 (Improvement of precipitation forecasting skill of ECMWF data using multi-layer perceptron technique)

  • 이승수;김가영;윤순조;안현욱
    • 한국수자원학회논문집
    • /
    • 제52권7호
    • /
    • pp.475-482
    • /
    • 2019
  • 2주에서 2개월까지 선행기간을 가지는 계절내-계절(Subseasonal-to-Seasonal, S2S) 예측결과는 산업전반에 걸쳐 다양한 분야에 활용이 가능할 것으로 기대되고 있으나, 일기예보나 중장기 예보대비 낮은 예측성으로 인하여 현재까지 활용성이 매우 낮은 실정이다. 본 연구에서는 기계학습 기법중 비선형회귀 분야에서 좋은 결과를 보여주는 다층퍼셉트론 기법을 이용하여 S2S 예측자료의 후처리를 통한 국내 영역에서의 강수예측성 향상에 관한 연구를 수행하였다. 후처리 모형의 학습을 위한 입력자료로는 ECMWF의 S2S 과거예측(Hindcast) 정보를 이용하였으며 양분예보기법에 기반하여 학습된 다층퍼셉트론 모델을 이용한 후처리 결과와의 비교 분석이 수행되었다. 비교분석 결과 편차도(Bias score)는 평균 59.7% 감소하였고, 정확도(Accuracy)는 124.3% 증가하였으며, 임계성공지수(Critical Success Index)는 88.5% 향상된 것으로 분석되었다. 탐지확률(Probability of detection)의 경우 원자료 대비 평균 9.5% 감소하였으나 이는 ECMWF의 예측모델이 강수의 발생일을 과도하게 예측하였기 때문인 것으로 분석되었다. 본 연구 수행 결과 비록 ECMWF의 S2S 예측자료의 예측성이 낮더라도 후처리를 통해 예측성을 향상 시킬 수 있음을 확인하였으며, 본 연구 결과는 향후 수자원과 농업 분야에서 S2S 자료의 활용성을 높이는데 도움이 될 수 있을 것으로 판단된다.

GloSea5 모델의 자료처리 시스템 구축 및 시·공간적 재현성평가 (Data processing system and spatial-temporal reproducibility assessment of GloSea5 model)

  • 문수진;한수희;최광순;송정현
    • 한국수자원학회논문집
    • /
    • 제49권9호
    • /
    • pp.761-771
    • /
    • 2016
  • 기상청에서 운영하고 제공하는 전지구 계절예측시스템 GloSea5 (Global Seasonal forecasting system version 5)자료를 활용하여 용담댐유역에 적용하고자 하였다. GloSea5는 예측자료(Forecast; 이하 FCST)와 과거재현자료(Hindcast; 이하 HCST)로 제공되며 공간 수평해상도는 N216 ($0.83^{\circ}{\times}0.56^{\circ}$)으로 중위도에서 약 60km이다. 이를 유역단위 물관리에 활용하기 위해서는 시 공간적인 상세화가 필요하므로 통계적 상세화 기법을 수행하여 변수가 갖는 계통적인 지역 오차를 보정함으로써 자료의 신뢰도를 향상시키고자 하였다. HCST자료는 앙상블 형태로 주어지며 용담댐 유역의 앙상블 평균에 대한 6번 격자의 통계적인 상관성($R^2=0.60$, RMSE=88.92, NSE=0.57)이 가장 높게 나타났다. 또한 계절분석시 여름철의 경우 원시 GloSea5 강우량이 600.1mm로 관측값인 816.1mm 대비 -26.5%로 가장 많은 차이를 보였으며 상세화 후 GloSea5 강우량은 -3.1%의 오차율을 보였다. 대부분의 과소 모의된 결과가 여름철 홍수기에 해당되는 강우로 상세화 이후 강우가 회복되는 매우 중요한 결과를 보였다. 계절별 Moran's I 지수를 이용한 공간적 자기상관분석 결과 역시 통계적으로 유의성 있는 공간적인 분포를 나타냄으로써 자료의 불확실성을 개선하고 시 공간적인 정확도와 타당성을 입증하였다. HCST기간에 대한 GloSea5의 앙상블 강우에 대한 신뢰도를 향상시킴으로써 수문학적인 영향을 평가하기 위한 자료로서의 충분한 가능성을 확보하였으며 이러한 시 공간적인 재현성에 대한 평가결과는 향후 유역단위 물관리를 위한 기초자료로서 매우 중요한 역할을 할 것이다.

시계열분석을 이용한 한국 명태어업의 어획량 예측 : AIC (Prodiction of Walleye Pollock , Theragra Chalcogramma , Landings in Korea by Time Series Analysis : AIC)

  • 박해훈;윤갑동
    • 수산해양기술연구
    • /
    • 제32권3호
    • /
    • pp.235-240
    • /
    • 1996
  • Forecasts of monthly landings of walleye pollock, Theragra chalcogramma, in Korea were carried out by the seasonal Autoregressive Integrated Moving Average(ARlMA) model. The Box - Cox transformation on the walleye pollock catch data handles nonstationary variance. The equation of Box - Cox transformation was Y'=($Y^0.31$_ 1)/0.31. The model identification was determined by minimum AIC(Akaike Information Criteria). And the seasonal ARlMA model is presented (1- O.583B)(1- $B^1$)(l- $B^12$)$Z_t$ =(l- O.912B)(1- O.732$B^12$)et where: $Z_t$=value at month t ; $B^p$ is a backward shift operator, that is, $B^p$$Z_t$=$Z_t$-P; and et= error term at month t, which is to forecast 24 months ahead the walleye pollock landings in Korea. Monthly forecasts of the walleye pollock landings for 1993~ 1994, which were compared with the actual landings, had an absolute percentage error(APE) range of 20.2-226.1 %. Thtal observed annual landings in 1993 and 1994 were 16, 61OM/T and 1O, 748M/T respectively, while the model predicted 10, 7 48M/T and 8, 203M/T(APE 37.0% and 23.7%, respectively).

  • PDF

신선·시즌 상품의 최적 주문량 산정 문제에 대한 실증적 분석 : 소매유통업에서 뉴스벤더 모델의 적용 (An Empirical Analysis on Optimal Oder Quantity of Perishable and Seasonal Products : A Practical Application of Newsvendor Model in Retail)

  • 노건호;황승준
    • 산업경영시스템학회지
    • /
    • 제42권1호
    • /
    • pp.41-54
    • /
    • 2019
  • Although retailers deals with a large number of single-term inventory items, but few cases have been considered in the areas of practical decision making. However, recent moves to strengthen fair trade have created a real need for single-period inventory decision-making problems. This study addresses the problem of ordering quantity decisions that are expected to maximize profits using classical newsvendor models. The research target is data on seasonal and perishable products from retail. We also use data from retailers to actually apply the newsvendor model and calculate the results to compare performance. It also suggests solutions for estimating demand for products sold in order to apply newsvendor models that utilize actual demand ratio versus forecast demand. This study would like to examine the effectiveness of this research through data analysis and make some suggestions for applying it to reality.

Satellite-based Drought Forecasting: Research Trends, Challenges, and Future Directions

  • Son, Bokyung;Im, Jungho;Park, Sumin;Lee, Jaese
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.815-831
    • /
    • 2021
  • Drought forecasting is crucial to minimize the damage to food security and water resources caused by drought. Satellite-based drought research has been conducted since 1980s, which includes drought monitoring, assessment, and prediction. Unlike numerous studies on drought monitoring and assessment for the past few decades, satellite-based drought forecasting has gained popularity in recent years. For successful drought forecasting, it is necessary to carefully identify the relationships between drought factors and drought conditions by drought type and lead time. This paper aims to provide an overview of recent research trends and challenges for satellite-based drought forecasts focusing on lead times. Based on the recent literature survey during the past decade, the satellite-based drought forecasting studies were divided into three groups by lead time (i.e., short-term, sub-seasonal, and seasonal) and reviewed with the characteristics of the predictors (i.e., drought factors) and predictands (i.e., drought indices). Then, three major challenges-difficulty in model generalization, model resolution and feature selection, and saturation of forecasting skill improvement-were discussed, which led to provide several future research directions of satellite-based drought forecasting.

ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측 (Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model)

  • 백미경;김상민
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • 한국인공지능학회지
    • /
    • 제12권1호
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

기후변화의 위험이 시중은행과 손해보험에 장기적으로 미치는 영향 (Climate Change-Induced Physical Risks' Impact on Korean Commercial Banks and Property Insurance Companies in the Long Run)

  • 김세완
    • 대기
    • /
    • 제34권2호
    • /
    • pp.107-121
    • /
    • 2024
  • In this study, we empirically analyzed the impact of physical risks due to climate change on the soundness and operational performance of the financial industry by combining economics and climatology. Particularly, unlike previous studies, we employed the Seasonal-Trend decomposition using LOESS (STL) method to extract trends of climate-related risk variables and economic-financial variables, conducting a two-stage empirical analysis. In the first stage estimation, we found that the delinquency rate and the Bank for International Settlement (BIS) ratio of commercial banks have significant negative effects on the damage caused by natural disasters, frequency of heavy rainfall, average temperature, and number of typhoons. On the other hand, for insurance companies, the damage from natural disasters, frequency of heavy rainfall, frequency of heavy snowfall, and annual average temperature have significant negative effects on return on assets (ROA) and the risk-based capital ratio (RBC). In the second stage estimation, based on the first stage results, we predicted the soundness and operational performance indicators of commercial banks and insurance companies until 2035. According to the forecast results, the delinquency rate of commercial banks is expected to increase steadily until 2035 under assumption that recent years' trend continues until 2035. It indicates that banks' managerial risk can be seriously worsened from climate change. Also the BIS ratio is expected to decrease which also indicates weakening safety buffer against climate risks over time. Additionally, the ROA of insurance companies is expected to decrease, followed by an increase in the RBC, and then a subsequent decrease.