• Title/Summary/Keyword: seasonal forecast

Search Result 175, Processing Time 0.024 seconds

Study on Forecasting Hotel Banquet Revenue by Utilizing ARIMA Model (ARIMA 모형을 이용한 호텔 연회의 매출액 예측에 관한 연구)

  • Cho, Sung-Ho;Chang, Se-Jun
    • Culinary science and hospitality research
    • /
    • v.15 no.2
    • /
    • pp.231-242
    • /
    • 2009
  • One of the most crucial information at the hotel banquet is revenue data. Revenue forecast enables cost reduction, increases staffing efficiency, and provides information that helps maximizing competitive advantages in unforeseen environment. This research forecasts the hotel banquet revenue by utilizing ARIMA Model which was assessed as the appropriate forecast model for international researches. The data used for this research was based on the monthly banquet revenue data of G hotel at Seoul. The analysis results showed that SARIMA(2, 1, 3)(0, 1, 1) was finally presumed. This research implied that the ARIMA model, which was assessed as the appropriate forecast model, was applied for analyzing the monthly hotel banquet revenue data. Additionally, the research provides beneficial information with which hotel banquet professionals can utilize as a reference.

  • PDF

KTX Passenger Demand Forecast with Intervention ARIMA Model (개입 ARIMA 모형을 이용한 KTX 수요예측)

  • Kim, Kwan-Hyung;Kim, Han-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.470-476
    • /
    • 2011
  • This study proposed the intervention ARIMA model as a way to forecast the KTX passenger demand. The second phase of the Gyeongbu high-speed rail project and the financial crisis in 2008 were analyzed in order to determine the effect of time series on the opening of a new line and economic impact. As a result, the financial crisis showed that there is no statistically significant impact, but the second phase of the Gyeongbu high-speed rail project showed that the weekday trips increased about 17,000 trips/day and the weekend trips increased about 26,000 trips/day. This study is meaningful in that the intervention explained the phenomena affecting the time series of KTX trip and analyzed the impact on intervention of time series quantitatively. The developed model can be used to forecast the outline of the overall KTX demand and to validate the KTX O/D forecasting demand.

Development of Updateable Model Output Statistics (UMOS) System for the Daily Maximum and Minimum Temperature (일 최고 및 최저 기온에 대한 UMOS (Updateable Model Output Statistics) 시스템 개발)

  • Hong, Ki-Ok;Suh, Myoung-Seok;Kang, Jeon-Ho;Kim, Chansoo
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.73-89
    • /
    • 2010
  • An updateable model output statistics (UMOS) system for daily maximum and minimum temperature ($T_M$ and $T_m$) over South Korea based on the Canadian UMOS system were developed and validated. RDAPS (regional data assimilation and prediction system) and KWRF (Korea WRF) which have quite different physics and dynamics were used for the development of UMOS system. The 20 most frequently selected potential predictors for each season, station, and forecast projection time from the 68 potential predictors of the MOS system, were used as potential predictors of the UMOS system. The UMOS equations were developed through the weighted blending of the new and old model data, with weights chosen to emphasize the new model data while including enough old model data to ensure stable equations and a smooth transition of dependency from the old model to the new model. The UMOS equations are being updated by every 7 days. The validation results of $T_M$ and $T_m$ showed that seasonal mean bias, RMSE, and correlation coefficients for the total forecast projection times are -0.41-0.17 K, 1.80-2.46 K, and 0.80-0.97, respectively. The performance is slightly better in autumn and winter than in spring and summer. Also the performance of UMOS system are clearly dependent on location, better at the coastal region than inland area. As in the MOS system, the performance of UMOS system is degraded as the forecast day increases.

Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm (수치 예측 알고리즘 기반의 풍속 예보 모델 학습)

  • Kim, Se-Young;Kim, Jeong-Min;Ryu, Kwang-Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.19-27
    • /
    • 2015
  • Technologies of wind power generation for development of alternative energy technology have been accumulated over the past 20 years. Wind power generation is environmentally friendly and economical because it uses the wind blowing in nature as energy resource. In order to operate wind power generation efficiently, it is necessary to accurately predict wind speed changing every moment in nature. It is important not only averagely how well to predict wind speed but also to minimize the largest absolute error between real value and prediction value of wind speed. In terms of generation operating plan, minimizing the largest absolute error plays an important role for building flexible generation operating plan because the difference between predicting power and real power causes economic loss. In this paper, we propose a method of wind speed prediction using numeric prediction algorithm-based wind speed forecast model made to analyze the wind speed forecast given by the Meteorological Administration and pattern value for considering seasonal property of wind speed as well as changing trend of past wind speed. The wind speed forecast given by the Meteorological Administration is the forecast in respect to comparatively wide area including wind generation farm. But it contributes considerably to make accuracy of wind speed prediction high. Also, the experimental results demonstrate that as the rate of wind is analyzed in more detail, the greater accuracy will be obtained.

Forecasting daily peak load by time series model with temperature and special days effect (기온과 특수일 효과를 고려하여 시계열 모형을 활용한 일별 최대 전력 수요 예측 연구)

  • Lee, Jin Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.161-171
    • /
    • 2019
  • Varied methods have been researched continuously because the past as the daily maximum electricity demand expectation has been a crucial task in the nation's electrical supply and demand. Forecasting the daily peak electricity demand accurately can prepare the daily operating program about the generating unit, and contribute the reduction of the consumption of the unnecessary energy source through efficient operating facilities. This method also has the advantage that can prepare anticipatively in the reserve margin reduced problem due to the power consumption superabundant by heating and air conditioning that can estimate the daily peak load. This paper researched a model that can forecast the next day's daily peak load when considering the influence of temperature and weekday, weekend, and holidays in the Seasonal ARIMA, TBATS, Seasonal Reg-ARIMA, and NNETAR model. The results of the forecasting performance test on the model of this paper for a Seasonal Reg-ARIMA model and NNETAR model that can consider the day of the week, and temperature showed better forecasting performance than a model that cannot consider these factors. The forecasting performance of the NNETAR model that utilized the artificial neural network was most outstanding.

The Forecast of the Cargo Transportation for the North Port in Busan, using Time Series Models (시계열 모형을 이용한 부산 북항의 물동량 예측)

  • Kim, Jung-Hoon
    • Journal of Korea Port Economic Association
    • /
    • v.24 no.2
    • /
    • pp.1-17
    • /
    • 2008
  • In this paper the cargo transportation were forecasted for the North Port in Busan through time series models. The cargo transportation were classified into three large groups; container, oil, general cargo. The seasonal indexes of existing cargo transportation were firstly calculated, and optimum models were chosen among exponential smoothing models and ARIMA models. The monthly cargo transportation were forecasted with applying the seasonal index in annual cargo transportation expected from the models. Thus, the cargo transportation in 2011 and 2015 were forecasted about 22,900 myriad ton and 24,654 myriad ton respectively. It was estimated that container cargo volume would play the role of locomotive in the increase of the future cargo transportation. On the other hand, the oil and general cargo have little influence upon it.

  • PDF

Forecasting the Trading Volumes of Marine Transport and Ports Logistics Policy -Using Multiplicative Seasonal ARIMA Model- (해상운송의 물동량 예측과 항만물류정책 -승법 계절 ARIMA 모형을 이용하여-)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.1
    • /
    • pp.149-162
    • /
    • 2007
  • The purpose of this study is to forecast the marine trading volumes using multiplicative seasonal Autoregressive Integrated Moving Average(ARIMA) model. The paper proceeds by comparing the forecasting performances of the unload volumes with those of the load volumes with Box-Jenkins ARIMA model. Also, I present the predicted values based on the ARIMA model. The result shows that the trading volumes increase very slowly.

  • PDF

Forecasting the Korea's Port Container Volumes With SARIMA Model (SARIMA 모형을 이용한 우리나라 항만 컨테이너 물동량 예측)

  • Min, Kyung-Chang;Ha, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.600-614
    • /
    • 2014
  • This paper develops a model to forecast container volumes of all Korean seaports using a Seasonal ARIMA (Autoregressive Integrated Moving Average) technique with the quarterly data from the year of 1994 to 2010. In order to verify forecasting accuracy of the SARIMA model, this paper compares the predicted volumes resulted from the SARIMA model with the actual volumes. Also, the forecasted volumes of the SARIMA model is compared to those of an ARIMA model to demonstrate the superiority as a forecasting model. The results showed the SARIMA Model has a high level of forecasting accuracy and is superior to the ARIMA model in terms of estimation accuracy. Most of the previous research regarding the container-volume forecasting of seaports have been focussed on long-term forecasting with mainly monthly and yearly volume data. Therefore, this paper suggests a new methodology that forecasts shot-term demand with quarterly container volumes and demonstrates the superiority of the SARIMA model as a forecasting methodology.

KTX passenger demand forecast with multiple intervention seasonal ARIMA models (다중개입 계절형 ARIMA 모형을 이용한 KTX 수송수요 예측)

  • Cha, Hyoyoung;Oh, Yoonsik;Song, Jiwoo;Lee, Taewook
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.139-148
    • /
    • 2019
  • This study proposed a multiple intervention time series model to predict KTX passenger demand. In order to revise the research of Kim and Kim (Korean Society for Railway, 14, 470-476, 2011) considering only the intervention of the second phase of Gyeong-bu before November of 2011, we adopted multiple intervention seasonal ARIMA models to model the time series data with additional interventions which occurred after November of 2011. Through the data analysis, it was confirmed that the effects of various interventions such as Gyeong-bu and Ho-nam 2 phase, outbreak of MERS and national holidays, which affected the KTX transportation demand, are successfully explained and the prediction accuracy could be quite improved significantly.

Downward Influences of Sudden Stratospheric Warming (SSW) in GloSea6: 2018 SSW Case Study (GloSea6 모형에서의 성층권 돌연승온 하층 영향 분석: 2018년 성층권 돌연승온 사례)

  • Dong-Chan Hong;Hyeon-Seon Park;Seok-Woo Son;Joowan Kim;Johan Lee;Yu-Kyung Hyun
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.493-503
    • /
    • 2023
  • This study investigates the downward influences of sudden stratospheric warming (SSW) in February 2018 using a subseasonal-to-seasonal forecast model, Global Seasonal forecasting system version 6 (GloSea6). To quantify the influences of SSW on the tropospheric prediction skills, free-evolving (FREE) forecasts are compared to stratospheric nudging (NUDGED) forecasts where zonal-mean flows in the stratosphere are relaxed to the observation. When the models are initialized on 8 February 2018, both FREE and NUDGED forecasts successfully predicted the SSW and its downward influences. However, FREE forecasts initialized on 25 January 2018 failed to predict the SSW and downward propagation of negative Northern Annular Mode (NAM). NUDGED forecasts with SSW nudging qualitatively well predicted the downward propagation of negative NAM. In quantity, NUDGED forecasts exhibit a higher mean squared skill score of 500 hPa geopotential height than FREE forecasts in late February and early March. The surface air temperature and precipitation are also better predicted. Cold and dry anomalies over the Eurasia are particularly well predicted in NUDGED compared to FREE forecasts. These results suggest that a successful prediction of SSW could improve the surface prediction skills on subseasonal-to-seasonal time scale.