• Title/Summary/Keyword: seasonal circulation

Search Result 181, Processing Time 0.027 seconds

SEASONAL VARIATIONS OF WIND AND TEMPERATURE AT THE MESOPAUSE (중간권 계면에서의 온도와 바람의 계절 변화)

  • 최기혁;홍윤식;데이빗리즈;빈센트위크와
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 1997
  • The Mesopause (85km) is the boundary between the Mesosphere and the Thermosphere and is very interesting region because there are active fluid dynamic motions and airglow phenomena due to various chemical reactions. But there have been not many studies due to the difficulties of insitu measurement. However in this study we have obtained the Doppler temperatures and winds through the observing Hydroxyl(OH) emission at 843nm using a ground-based Fabry-Perot interferometer. Due to the 2 years of long term observation, we can confirm the seasonal Mesopause temperature variation, which is the opposite trend against the temperature at the ground level, and reveal annual and biannual variations for meridional and zonal wind respectively. These seasonal variations might be the result of the inter-hemispheric circulation.

  • PDF

A Numerical Prediction of Nutrient circulation in Hakata Bay by Sediment-Water Ecological Model(SWEM) (수-저질생태계모델에 의한 박다만의 물질순환예측)

  • Lee In-Cheol;Ryu Cheong-Ro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.3-14
    • /
    • 2001
  • In order to predict nutrient circulation in Hakata bay, we have developed an ecosystem model named the Sediment-Water Ecological Model (SWEM). The model, consisting of two sub-models with hydrodynamic and biological models, simulates the circulation process of nutrient between water column and sediment, such as nutrient regeneration from sediments as well as ecological structures on the growth of phytoplankton and zooplankton. This model was applied to prevent eutrophication in Hakata bay, located in western Japan. The calculated results of the tidal currents by the hydrodynamic model showed good agreement with the observed currents. Moreover, SWEM simulated reasonably well the seasonal variations of water quality, and reproduced spatial heterogeneity of water quality in the bay, observed in the field. According to the simulation of phosphorus circulation at the head of the bay, it was predicted that the regeneration process of phosphorus across the sediment-water interface had a strong influence on the water quality of the bay.

  • PDF

Seasonal and Latitudinal Variations of the F2-Layer during Magnetic Storms

  • Park, Yoon-Kyung;Kwak, Young-Sil;Ahn, Byung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.231-239
    • /
    • 2013
  • To identify seasonal and latitudinal variations of F2 layer during magnetic storm, we examine the change of daily averages of foF2 observed at Kokubunji and Hobart during high (2000~2002) and low (2006~2008) solar activity intervals. It is found that geomagnetic activity has a different effect on the ionospheric F2-layer electron density variation for different seasons and different latitudes. We, thus, investigate how the change of geomagnetic activity affects the ionospheric F2-layer electron density with season and latitude. For this purpose, two magnetic storms occurred in equinox (31 March 2001) and solstice (20 November 2003) seasons are selected. Then we investigate foF2, which are observed at Kokubunji, Townsville, Brisbane, Canberra and Hobart, Dst index, Ap index, and AE index for the two magnetic storm periods. These observatories have similar geomagnetic longitude, but have different latitude. Furthermore, we investigate the relation between the foF2 and the [O]/[$N_2$] ratio and TEC variations during 19-22 November 2003 magnetic storm period. As a result, we find that the latitudinal variations of [O]/[$N_2$] ratio and TEC are closely related with the latitudinal variation of foF2. Therefore, we conclude that the seasonal and latitudinal variations of foF2 during magnetic storm are caused by the seasonal and latitudinal variations of mean meridional circulation of the thermosphere, particularly upwelling and downwelling of neutral atmosphere during magnetic storm.

대전지역 약수의 수질특성과 관리방안

  • 정찬호;김은지;문병진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.15-18
    • /
    • 2001
  • Sixty natural springs and wells used as community facilities for drinking water are developed along mountain climbing way of suburban area and residential area in Daejeon City. In this study, the seasonal variation of their water quality and hydrochemical characteristics were investigated. Some natural springs are vulnerable to bacilli contamination because of their short residence time and shallow circulation in subsurface environment. The waters show hydrochemical types of Ca-HCO$_3$ and Na-HCO$_3$, and are characterized by low electrical conductance and weak acidic pH.

  • PDF

Surface Synoptic Climatic Patterns for Heavy Snowfall Events in the Republic of Korea (우리나라 대설 시 지상 종관 기후 패턴)

  • Choi, Gwang-Yong;Kim, Jun-Su
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.3
    • /
    • pp.319-341
    • /
    • 2010
  • The purposes of this study are to classify heavy snowfall types in the Republic of Korea based on fresh snowfall data and atmospheric circulation data during the last 36(1973/74-2008/09) snow seasons and to identify typical surface synoptic climate patterns that characterize each heavy snowfall type. Four synoptic climate categories and seventeen regional heavy snowfall types are classified based on sea level pressure/surface wind vector patterns in East Asia and frequent spatial clustering patterns of heavy snowfall in the Republic of Korea, respectively. Composite analyses of multiple surface synoptic weather charts demonstrate that the locations and intensity of pressure/wind vector mean and anomaly cores in East Asia differentiate each regional heavy snowfall type in Korea. These differences in synoptic climatic fields are primarily associated with the surge of the Siberian high pressure system and the appearance of low pressure systems over the Korean Peninsula. In terms of hemispheric atmospheric circulation, synoptic climatic patterns in the negative mode of winter Arctic Oscillation (AO) are also associated with frequent heavy snowfall in the Republic of Korea at seasonal scales. These results from long-term synoptic climatic data could contribute to improvement of short-range or seasonal prediction of regional heavy snowfall.

Characteristic Change Analysis of Rainfall Events using Daily Rainfall Data (일강우자료를 이용한 강우사상의 변동 특성 분석)

  • Oh, Tae-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.933-951
    • /
    • 2009
  • Climate change of global warming may affect the water circulation in Korea. Rainfall is occurred with complex of multiple climatic indices. Therefore, the rainfall is one of the most significant index due to climate change in the process of water circulation. In this research, multiple time series data of rainfall events were extracted to represent the rainfall characteristics. In addition, the occurrence of rainfall time series analyzed by annual, seasonal and monthly data. Analysis method used change analysis of mean and standard deviation and trend analysis. Also, changes in rainfall characteristics and the relative error was calculated during the last 10 years for comparison with past data. At the results, significant statistical results weren't showed by randomness of rainfall data. However, amount of rainfall generally increased last 10 years, and number of raining days had trend of decrease. In addition, seasonal and monthly changes in the rainfall characteristics can be found to appear differently.

A Numerical Modeling of the East sea circulation (동해 순환의 수치모델)

  • Seung, Young-Ho;Kim, Kyun
    • 한국해양학회지
    • /
    • v.28 no.4
    • /
    • pp.292-304
    • /
    • 1993
  • The east Sea circulation is numerically modeled with refined grid resolution elaborated open boundary condition, and by directly imposing the measured surface temperature and salinity typical the east Korean Warm current are clearer than those in previous works. among others, The Ulleung warm Water and the Intermediate Water of minimum salinity are nicely reproduced. The latter is formed in the northern/northwestern coastal region in winter and is advocated southward by strong under-current. the former is associated with a locally generated anti-cyclonic gyres. The model indicates strong seasonal variation of Nearshore Current along the Japanese coast from wintertime barotropic to summertime baroclinic structures. the associated strong reversed under-cur-rent in summer is not well understood. Global circulation pattern is characterized by two regions of cyclonic and anti-cyclonic gyres in the north and south, respectively. The presence of these gyres indicates importance of local dynamics in East Sea circulation. This model, however, does not completely resolve the problem of overshooting of the East Korean Warm current.

  • PDF

Development and Assessment of Dynamical Seasonal Forecast System Using the Cryospheric Variables (빙권요소를 활용한 겨울철 역학 계절예측 시스템의 개발 및 검증)

  • Shim, Taehyoun;Jeong, Jee-Hoon;Ok, Jung;Jeong, Hyun-Sook;Kim, Baek-Min
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.155-167
    • /
    • 2015
  • A dynamical seasonal prediction system for boreal winter utilizing cryospheric information was developed. Using the Community Atmospheric Model, version3, (CAM3) as a modeling system, newly developed snow depth initialization method and sea ice concentration treatment were implemented to the seasonal prediction system. Daily snow depth analysis field was scaled in order to prevent climate drift problem before initializing model's snow fields and distributed to the model snow-depth layers. To maximize predictability gain from land surface, we applied one-month-long training procedure to the prediction system, which adjusts soil moisture and soil temperature to the imposed snow depth. The sea ice concentration over the Arctic region for prediction period was prescribed with an anomaly-persistent method that considers seasonality of sea ice. Ensemble hindcast experiments starting at 1st of November for the period 1999~2000 were performed and the predictability gain from the imposed cryospheric informations were tested. Large potential predictability gain from the snow information was obtained over large part of high-latitude and of mid-latitude land as a result of strengthened land-atmosphere interaction in the modeling system. Large-scale atmospheric circulation responses associated with the sea ice concentration anomalies were main contributor to the predictability gain.

A Prediction of Northeast Asian Summer Precipitation Using the NCEP Climate Forecast System and Canonical Correlation Analysis (NCEP 계절예측시스템과 정준상관분석을 이용한 북동아시아 여름철 강수의 예측)

  • Kwon, MinHo;Lee, Kang-Jin
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.88-94
    • /
    • 2014
  • The seasonal predictability of the intensity of the Northeast Asian summer monsoon is low while that of the western North subtropical high variability is, when state-of-the-art general circulation models are used, relatively high. The western North Pacific subtropical high dominates the climate anomalies in the western North Pacific-East Asian region. This study discusses the predictability of the western North Pacific subtropical High variability in the National Centers for Environmental Prediction Climate Forecast System (NCEP CFS). The interannual variability of the Northeast Asian summer monsoon is highly correlated with one of the western North Pacific subtropical Highs. Based on this relationship, we suggest a seasonal prediction model using NCEP CFS and canonical correlation analysis for Northeast Asian summer precipitation anomalies and assess the predictability of the prediction model. This methodology provides significant skill in the seasonal prediction of the Northeast Asian summer rainfall anomalies.

Application of ROMS-NPZD Coupled Model for Seasonal Variability of Nutrient and Chlorophyll at Surface Layer in the Northwestern Pacific (ROMS-NPZD 접합모델을 이용한 한반도 주변해역의 표층 영양염 및 클로로필의 계절변동성)

  • Lee, Joon-ho;Kim, Tae-hoon;Moon, Jae-hong
    • Ocean and Polar Research
    • /
    • v.38 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • Recently, there has been a growing interest in physical-biological ocean-modeling systems by communities in the fields of science and business. In this paper, we present preliminary results from a coupled physical-biological model for the Northwestern Pacific marginal seas. The ocean circulation component is an implementation of the Regional Ocean Modeling System (ROMS), and the lower trophic level ecosystem component is a Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model. The ROMS-NPZD coupled system, with a 25 km resolution, is forced by climatological atmospheric data and predicts the physical variables and concentrations of nitrate, phytoplankton, zooplankton, and detritus. Model results are compared with remote-sensed sea surface temperature and chlorophyll, and with climatological sea surface salinity and nitrate. Our model adequately reproduces the observed spatial distribution and seasonal variability of nitrate and chlorophyll concentrations as well as physical variables, showing a high correlation in the East Sea (ES) and Kuroshio/Oyashio Extension (KOE) region but relatively low correlation in the Yellow Sea (YS) and East China Sea (ECS). Although some deficiencies were found in the biological components, such as the over/underestimation of the intensity of phytoplankton blooms in the ES and KOE/the YS and ECS, our system demonstrates the capability of the model to capture and record dominant seasonal variability in physical-biological processes and this holds out the promise of coming to a better understanding of such processes and making better predictions .