• Title/Summary/Keyword: seasonal autoregressive integrated moving average (ARIMA)

Search Result 17, Processing Time 0.02 seconds

Forecasting Internet Traffic by Using Seasonal GARCH Models

  • Kim, Sahm
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.621-624
    • /
    • 2011
  • With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.

A Comparison of Seasonal Linear Models and Seasonal ARIMA Models for Forecasting Intra-Day Call Arrivals

  • Kim, Myung-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.237-244
    • /
    • 2011
  • In call forecasting literature, both the seasonal autoregressive integrated moving average(ARIMA) type models and seasonal linear models have been popularly suggested as competing models. However, their parallel comparison for the forecasting accuracy was not strictly investigated before. This study evaluates the accuracy of both the seasonal linear models and the seasonal ARIMA-type models when predicting intra-day call arrival rates using both real and simulated data. The seasonal linear models outperform the seasonal ARIMA-type models in both one-day-ahead and one-week-ahead call forecasting in our empirical study.

Forecasting with a combined model of ETS and ARIMA

  • Jiu Oh;Byeongchan Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.143-154
    • /
    • 2024
  • This paper considers a combined model of exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models that are commonly used to forecast time series data. The combined model is constructed through an innovational state space model based on the level variable instead of the differenced variable, and the identifiability of the model is investigated. We consider the maximum likelihood estimation for the model parameters and suggest the model selection steps. The forecasting performance of the model is evaluated by two real time series data. We consider the three competing models; ETS, ARIMA and the trigonometric Box-Cox autoregressive and moving average trend seasonal (TBATS) models, and compare and evaluate their root mean squared errors and mean absolute percentage errors for accuracy. The results show that the combined model outperforms the competing models.

Forecasting the Air Cargo Demand With Seasonal ARIMA Model: Focusing on ICN to EU Route (계절성 ARIMA 모형을 이용한 항공화물 수요예측: 인천국제공항발 유럽항공노선을 중심으로)

  • Min, Kyung-Chang;Jun, Young-In;Ha, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.3-18
    • /
    • 2013
  • This study develops a forecasting method to estimate air cargo demand from ICN(Incheon International Airport) to all airports in EU with Seasonal Autoregressive Integrated Moving Average (SARIMA) Model using volumes from the first quarter of 2000 to the fourth quarter of 2009. This paper shows the superiority of SARIMA Model by comparing the forecasting accuracy of SARIMA with that of other ARIMA (Autoregressive Integrated Moving Average) models. Given that very few papers and researches focuses on air route, this paper will be helpful to researchers concerned with air cargo.

Weekly Maximum Electric Load Forecasting for 104 Weeks by Seasonal ARIMA Model (계절 ARIMA 모형을 이용한 104주 주간 최대 전력수요예측)

  • Kim, Si-Yeon;Jung, Hyun-Woo;Park, Jeong-Do;Baek, Seung-Mook;Kim, Woo-Seon;Chon, Kyung-Hee;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2014
  • Accurate midterm load forecasting is essential to preventive maintenance programs and reliable demand supply programs. This paper describes a midterm load forecasting method using autoregressive integrated moving average (ARIMA) model which has been widely used in time series forecasting due to its accuracy and predictability. The various ARIMA models are examined in order to find the optimal model having minimum error of the midterm load forecasting. The proposed method is applied to forecast 104-week load pattern using the historical data in Korea. The effectiveness of the proposed method is evaluated by forecasting 104-week load from 2011 to 2012 by using historical data from 2002 to 2010.

Development of ARIMA-based Forecasting Algorithms using Meteorological Indices for Seasonal Peak Load (ARIMA모델 기반 생활 기상지수를 이용한 동·하계 최대 전력 수요 예측 알고리즘 개발)

  • Jeong, Hyun Cheol;Jung, Jaesung;Kang, Byung O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1257-1264
    • /
    • 2018
  • This paper proposes Autoregressive Integrated Moving Average (ARIMA)-based forecasting algorithms using meteorological indices to predict seasonal peak load. First of all, this paper observes a seasonal pattern of the peak load that appears intensively in winter and summer, and generates ARIMA models to predict the peak load of summer and winter. In addition, this paper also proposes hybrid ARIMA-based models (ARIMA-Hybrid) using a discomfort index and a sensible temperature to enhance the conventional ARIMA model. To verify the proposed algorithm, both ARIMA and ARIMA-Hybrid models are developed based on peak load data obtained from 2006 to 2015 and their forecasting results are compared by using the peak load in 2016. The simulation result indicates that the proposed ARIMA-Hybrid models shows the relatively improved performance than the conventional ARIMA model.

Performance for simple combinations of univariate forecasting models (단변량 시계열 모형들의 단순 결합의 예측 성능)

  • Lee, Seonhong;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.385-393
    • /
    • 2022
  • In this paper, we consider univariate time series models that are well known in the field of forecasting and we study on forecasting performance for their simple combinations. The univariate time series models include exponential smoothing methods and ARIMA (autoregressive integrated moving average) models, their extended models, and non-seasonal and seasonal random walk models, which is frequently used as benchmark models for forecasting. The median and mean are simply used for the combination method, and the data set used for performance evaluation is M3-competition data composed of 3,003 various time series data. As results of evaluating the performance by sMAPE (symmetric mean absolute percentage error) and MASE (mean absolute scaled error), we assure that the simple combinations of the univariate models perform very well in the M3-competition dataset.

Time Series Analysis and Forecasting of Electrical Conductivity in Coastal Aquifers (연안암반대수층의 해수침투경향성 파악을 위한 전기전도도 시계열 분석과 예측)

  • Ju, Jeong-Woung;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.267-276
    • /
    • 2017
  • Seawater intrusion into coastal fractured rock aquifer, resulting in groundwater contamination, is of serious concern in coastal areas of Jeolla Namdo, Korea, which heavily depends on groundwater resources. Time series analysis and forecasting were carried out to analyze and predict EC which is a major indicator of seawater intrusion. Two time series models of autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) were tested for suggesting appropriate time series model. Time series data of EC measured over one year showed a increasing trend with short periodic fluctuations, due to tidal effect and pumping, which indicated that EC time series data tended to be non-stationary. SARIMA model was found better fitted to observed EC than any other time series model. Time series analysis and modeling was found to be a useful tool to analyze EC at coastal fractured rock aquifer subject to seawater intrusion.

Forecasting the Trading Volumes of Marine Transport and Ports Logistics Policy -Using Multiplicative Seasonal ARIMA Model- (해상운송의 물동량 예측과 항만물류정책 -승법 계절 ARIMA 모형을 이용하여-)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.1
    • /
    • pp.149-162
    • /
    • 2007
  • The purpose of this study is to forecast the marine trading volumes using multiplicative seasonal Autoregressive Integrated Moving Average(ARIMA) model. The paper proceeds by comparing the forecasting performances of the unload volumes with those of the load volumes with Box-Jenkins ARIMA model. Also, I present the predicted values based on the ARIMA model. The result shows that the trading volumes increase very slowly.

  • PDF

Monthly rainfall forecast of Bangladesh using autoregressive integrated moving average method

  • Mahmud, Ishtiak;Bari, Sheikh Hefzul;Rahman, M. Tauhid Ur
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.162-168
    • /
    • 2017
  • Rainfall is one of the most important phenomena of the natural system. In Bangladesh, agriculture largely depends on the intensity and variability of rainfall. Therefore, an early indication of possible rainfall can help to solve several problems related to agriculture, climate change and natural hazards like flood and drought. Rainfall forecasting could play a significant role in the planning and management of water resource systems also. In this study, univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was used to forecast monthly rainfall for twelve months lead-time for thirty rainfall stations of Bangladesh. The best SARIMA model was chosen based on the RMSE and normalized BIC criteria. A validation check for each station was performed on residual series. Residuals were found white noise at almost all stations. Besides, lack of fit test and normalized BIC confirms all the models were fitted satisfactorily. The predicted results from the selected models were compared with the observed data to determine prediction precision. We found that selected models predicted monthly rainfall with a reasonable accuracy. Therefore, year-long rainfall can be forecasted using these models.