• Title/Summary/Keyword: seasonal ARIMA model

검색결과 96건 처리시간 0.021초

ARIMA model에 의한 서울시 일부지역 $SO_2$ 오염도의 월변화에 대한 시계열분석 (A Time Series Analysis for the Monthly Variation of $SO_2$ in the Certain Areas)

  • 김광진;이상훈;정용
    • 한국대기환경학회지
    • /
    • 제4권2호
    • /
    • pp.72-81
    • /
    • 1988
  • The typical ARIMA model which was developed by Box and Jenkins, was applied to the monthly $SO_2$ data collected at Seoungsoo and Oryudong in metropolitan area over five years, 1982 to 1986. To find out the changing pattern of $SO_2$ concentration, autocorrelation and partial autocorrelation analysis were undertaken. The three steps of time series model building were followed and the residual series was found to be a random white noise. The results of this study is summarized as follows. 1) The monthly $SO_2$ series was found to be a non-stationary series which which has a periodicity of 12 months. After eliminating the periodicity by differencing, the monthly $SO_2$ series became a stationary series. 2) The ARIMA seasonal model of the $SO_2$ was determined to be ARIMA $(1, 0, 0)(0, 1, 0,)_{12}$ model. 3) The model equations based on the prediction were: for Seoungsoodong: $Y_t = 0.5214Y_{t-1} + Y_{t-12} - 0.5214Y_{t-13} + a_t$ for Oryudong: $Y_t = 0.8549Y_{t-1} + Y_{t-12} - 0.8549Y_{t-13} + a_t$ 4) The validity of the model identified was checked by compairing the measured $SO_2$ values and one-month-ahead predicted values. The result of correlation and regression analysis is as follows. Seoungsoodong: $Y = 0.8710X + 0.0062 r = 0.8768$ Oryudong : $Y = 0.8758X + 0.0073 r = 0.9512$

  • PDF

국내 3대 주요 컨테이너항만의 장래 컨테이너선박 교통량 추정 (The Estimation of the Future Container Ship Traffic for Three Major Ports in Korea)

  • 김정훈
    • 한국항해항만학회지
    • /
    • 제31권5호
    • /
    • pp.353-359
    • /
    • 2007
  • 컨테이너항만의 물동량이 증가하는 추세에서 장래에 발생될 컨테이너선박의 교통량을 예측한다면 항만의 효율적인 계획과 운영관리를 사전에 수립할 수 있다. 해상교통 관점에서도 컨테이너선박의 입 출항 척수를 장기적으로 추정하고, 이를 근거로 해상교통수요를 원활하게 처리할 수 있는 합리적인 방안을 계획할 수 있다. 따라서 본 연구에서는 전국항만 기본계획에서 제시된 부산항, 광양항, 인천항의 컨테이너 물동량 예측자료를 토대로 각 항만에 대한 컨테이너선의 장래 입 출항 교통량을 추정하였다. 이를 위해서 컨테이너선박의 척당 물동량 추세를 ARIMA 모형을 통해 예측하고, 계절지수를 산출하였다. 이와 같이 예측된 척당 물동량을 2011년, 2015년, 그리고 2020년의 컨테이너 물동량에 대비시켜 발생예상의 해상교통량을 추정하였다.

광, 공업용 건물의 전기 사용량에 대한 시계열 분석 (Forecasts of electricity consumption in an industry building)

  • 김민아;김재희
    • 응용통계연구
    • /
    • 제31권2호
    • /
    • pp.189-204
    • /
    • 2018
  • 본 연구는 2014년 1월부터 2017년 4월까지 광, 공업용 제조업을 하는 건물(GGM)의 전기 사용량에 대한 예측을 살펴보고자 한다. SARIMA, SARIMA + GARCH, Holt-Winters 방법, Fourier 변환으로 분해를 한 ARIMA 모형을 중심으로 네 가지 모형에 대한 적합을 하였다. 또한 2017년 5월 사용량에 대한 예측하고, 실제값을 고려하여 각 모형에 대해 예측 제곱근 평균 제곱 오차와 예측 오차율을 비교하였다. GGM 건물의 전기 사용량에 대한 변동이 심하기 때문에 여러 가지 모형 중에서도 변동성과 주기를 함께 고려한 SARIMA + GARCH 모형의 적합과 예측이 가장 뛰어난 것을 확인하였다.

시계열 회귀모형에 근거한 자동차 보험료 추정 (Estimating Automobile Insurance Premiums Based on Time Series Regression)

  • 김영화;박원서
    • 응용통계연구
    • /
    • 제26권2호
    • /
    • pp.237-252
    • /
    • 2013
  • 보험료 및 보험료 구성요소에 대한 예측모형은 합리적인 보험료 결정에 필수적이다. 본 연구에서는 가변수 회귀모형, 독립변수 추가모형, 자기회귀 오차모형, 계절형 ARIMA 모형, 개입모형 등 적정한 자동차 대물 손해보험료 추정에 사용되는 다양한 모형을 소개하였다. 또한 실제 자동차 대물 보험료 자료를 이용하여 각 모형을 이용하여 보험료, 심도, 빈도 등을 추정하였으며, 모형의 추정결과는 추정치와 실제 자료값의 차이에 근거한 RMSE(Root Mean Squared Errors) 값을 통해 비교하였다. 실제 자료 분석 결과, 자기회귀 오차모형이 가장 좋은 성능을 보여주는 것을 알 수 있었다.

Prediction of Sales on Some Large-Scale Retailing Types in South Korea

  • Jeong, Dong-Bin
    • Asian Journal of Business Environment
    • /
    • 제7권4호
    • /
    • pp.35-41
    • /
    • 2017
  • Purpose - This paper aims to examine several time series models to predict sales of department stores and discount store markets in South Korea, while other previous trial has performed sales of convenience stores and supermarkets. In addition, optimal predicted values on the underlying model can be got and be applied to distribution industry. Research design, data, and methodology - Two retailing types, under investigation, are homogeneous and comparable in size based on 86 realizations sampled from January 2010 to February in 2017. To accomplish the purpose of this research, both ARIMA model and exponential smoothing methods are, simultaneously, utilized. Furthermore, model-fit measures may be exploited as important tools of the optimal model-building. Results - By applying Holt-Winters' additive seasonality method to sales of two large-scale retailing types, persisting increasing trend and fluctuation around the constant level with seasonal pattern, respectively, will be predicted from May in 2017 to February in 2018. Conclusions - Considering 2017-2018 forecasts for sales of two large-scale retailing types, it is important to predict future sales magnitude and to produce the useful information for reforming financial conditions and related policies, so that the impacts of any marketing or management scheme can be compared against the do-nothing scenario.

트렌드와 계절성을 가진 시계열에 대한 순수 모형과 하이브리드 모형의 비교 연구 (Comparison Studies of Hybrid and Non-hybrid Forecasting Models for Seasonal and Trend Time Series Data)

  • 정철우;김명석
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.1-17
    • /
    • 2013
  • 본 연구에서는 시계열 예측을 위해 선형 모형과 비선형 모형의 하이브리드 모형 및 순수 모형의 성과를 비교 평가하였다. 이를 위해 5가지 서로 다른 패턴을 가지는 데이터를 생성하여 시뮬레이션을 진행하였다. 본 연구에서 고려한 선형 모형은 AR(autoregressive model)과 SARIMA(seasonal autoregressive integrated moving average model)이고 비선형 모형은 인공신경망(artificial neural networks model)과 GAM(generalized additive model)이다. 특히, GAM은 여러 장점에도 불구하고 시계열 예측을 위한 비선형 모형으로 기존 연구들에서는 거의 쓰이지 않았던 모형이다. 시뮬레이션 결과, seasonality를 가지는 시계열에 대해서는 AR 및 AR-AR 모형이, trend를 가지는 시계열에 대해서는 SARIMA 및 SARIMA와 다른 모형의 하이브리드 모형이 다른 모형에 비해 높은 성과를 보였다. 한편, 인공신경망과 GAM을 비교하면, 트렌드와 계절성이 더해진 시계열에 대해 SARIMA와 GAM의 하이브리드 모형이 거의 모든 노이즈(noise) 수준에 대해 높은 성과를 보인 반면, 노이즈 수준이 미미한 경우에 한해 SARIMA와 인공신경망의 하이브리드 모형이 높은 성과를 보였다.

글로벌 해운시장 현황 분석 및 시계열 모형을 이용한 부산 신항 컨테이너 물동량 예측에 관한 연구 (Analysis of Global Shipping Market Status and Forecasting the Container Freight Volume of Busan New port using Time-series Model)

  • 조준호;변제섭;김희철
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권4호
    • /
    • pp.295-303
    • /
    • 2017
  • 본 논문에서는 최근 국제 해운시장의 동향과 국내 해운시장의 위기설에 대한 국내외적 요인을 정성적으로 파악하고, 국내 해운시장의 위기 이후 감소한 부산 신항의 물동량이 다시 회복세를 보일 수 있는 특성요인을 파악하고자 부산 신항의 향후 물동량에 대해 정량적으로 분석하여 사전적 예측추이의 파악과 회복세 추이를 분석하였다. 빅데이터 분석 툴인 R을 활용하여 부산 신항 컨테이너 물동량을 분석한 결과, 부산 신항 컨테이너 물동량의 변동은 승법계절 ARIMA 모델 (1,0,1)(1,0,1)[12]로 추정하였을 때, 추정오차와 AICc, BIC기준으로 가장 최적의 ARIMA모형인 것으로 나타났다. 따라서 부산 신항 물동량 추정의 최적의 모델인 ARIMA (1,0,1)(1,0,1)[12]에 의해 향후 36개월간의 부산 신항 물동량을 추정치를 예측한 결과, 13,157,184 TEU, 13,418,123 TEU, 13,539,884 TEU, 4,526,406 TEU 등으로 약 2%, 2%, 1%정도 증가하는 것으로 나타났다.

연안암반대수층의 해수침투경향성 파악을 위한 전기전도도 시계열 분석과 예측 (Time Series Analysis and Forecasting of Electrical Conductivity in Coastal Aquifers)

  • 주정웅;여인욱
    • 자원환경지질
    • /
    • 제50권4호
    • /
    • pp.267-276
    • /
    • 2017
  • 전라남도는 연안지역은 농업활동과 상수도의 미보급으로 인하여 지하수에 크게 의존하고 있다. 지하수의 과다사용은 지하수위 저하를 일으키며 그로 인한 해수침투가 발생할 가능성이 매우 높다. 따라서 지하수 사용에 따른 해수침투 관리가 매우 필요한 지역이다. 전라남도 무안군의 연안암반대수층에서 측정된 EC 자료를 이용하여 해안가 대수층에 적합한 시계열 모형을 구축하고, 해수침투의 지표인 EC를 예측하고자 시계열 분석을 수행하였다. 1년 이상 측정한 EC 시계열 자료는 짧은 주기적인 변동과 함께 추세적으로 증가하는 비정상 시계열의 특성을 보였다. 시계열 분석을 통해 시계열 모형 식별 결과 ARIMA 모형과 계절적인 요인을 고려 할 수 있는 SARIMA 모형 이 적합한 것으로 나타났다. 하지만 두 모형 적용한 결과, EC의 주기적인 변동으로 인해 ARIMA보다는 EC 자료의 변동 특성을 잘 반영한 SARIMA 모형이 예측에 있어서 유리한 것으로 나타났다. 위와 같이 시계열 분석은 암반 대수층에서 해수침투로 인한 EC의 변화를 예측하는데 있어 유용한 것으로 나타났다.

시계열 모형을 이용한 부산 북항의 물동량 예측 (The Forecast of the Cargo Transportation for the North Port in Busan, using Time Series Models)

  • 김정훈
    • 한국항만경제학회지
    • /
    • 제24권2호
    • /
    • pp.1-17
    • /
    • 2008
  • 본 연구에서는 부산 북항의 장래 물동량을 시계열 모형을 이용하여 정량적으로 예측하였다. 항만물동량을 화물의 특성에 따라 크게 컨테이너, 유류, 일반화물 3가지로 구분하였다. 북항의 물동량 예측에서는 먼저 기존 물동량의 계절지수를 산정하고, 지수평활모형과 ARIMA모형 중에서 최적모형을 선정하였다. 이를 통해 추정된 각 화물별 해당연도의 물동량에 계절지수를 적용하여 물동량을 월별로 산출하였다. 2011년과 2015년의 컨테이너 예측 물동량은 각각 21,390만톤, 23,144만톤이며, 이는 2007년 대비 2011년과 2015년에 각각 약 7.4%, 16.2%로 증가한 것이다. 유류화물의 물동량은 동일하게 약 705만톤으로 2007년 대비 약 4.7% 증가하는 것으로 나타났으나 2002년의 물동량보다는 낮을 것으로 예측되었다. 그리고 일반화물의 물동량은 약 805만톤으로 2007년 대비 2011년과 2015년에 각각 약 0.74%, 0.75% 감소할 것으로 나타나 2007년과 거의 비슷한 수준을 유지할 것으로 예측되었다. 향후 북항에서 처리될 것으로 예측된 전체 항만물동량은 2011년과 2015년에 각각 22,900만톤과 24,654만톤으로 예상되었다. 이는 2007년 대비 각각 약 7.0%, 15.2% 증가한 물동량이다. 이러한 물동량의 증가는 컨테이너화물의 견인차 역할로 인한 결과로 예측되었다. 또한 북항 전체의 장래 월별 물동량을 보면 4월에 가장 많고, 2월에는 가장 적을 것으로 나타났다.

  • PDF

계층형 주기적 자기회귀 이동평균 모형의 추정 (Estimation of Layered Periodic Autoregressive Moving Average Models)

  • 이성덕;김정군;김선우
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.507-516
    • /
    • 2012
  • 시계열의 상관구조가 시점에 의존하며 주기적인 상관성을 보이는 계절성 시계열 자료에 대한 시계열 모형들이 비교 분석된다. 주기적 자기회귀이동평균 모형을 소개하고, 실증분석으로 주기적 상관성을 지닌 스위스 Arosa 지방의 성층권 오존 월별 시계열에 계층형 모형인 주기적 자기회귀이동평균 모형과 계절 누적자기회귀이동 평균 모형의 적합을 통하여 주기적 자기회귀이동평균 모형의 우월성을 비교한다.