• Title/Summary/Keyword: seafloor acoustic image

Search Result 7, Processing Time 0.019 seconds

Sea-bottom Sediments and Seafloor Acoustic Image by Side Scan Sonar on Sindu-ri Offshore (신두리 해안 Side Scan Sonar 해저면 음향영상과 해저퇴적물)

  • Woo, Han-Jun;Lee, Yong-Kuk;Jeong, Kap-Sik;Je, Jong-Geel;Park, Gun-Tae;Jung, Baek-Hun;Cho, Jin-Hyung;Kim, Seong-Ryul
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.707-721
    • /
    • 2002
  • Seafloor acoustic image data using the side scan sonar system were gathered on the Sindu-ri offshore near the Taean peninsula, middle western Korea. The relationship between the back-scattering acoustic intensity and the sea-bottom sediment properties was studied. And these two data sets were compared and interpreted with the water depth, respectively. Most of sediment properties were correlated well to the acoustic intensity, however the distribution patterns of the sea-bottom sediment and the seafloor acoustic image were not similar to each other except the rocky bottom area. The water depth was not only influential on the distribution pattern of seafloor acoustic image but also showed a linear relation with the sediment properties distribution.

Absolute Sonar Position on Side Scan Sonar Data Processing (Side Scan Sonar 자료처리에서 수중예인체의 절대위치)

  • Lee, Yong-Kuk;Park, Gun-Tae;Suk, Bong-Chool;Jung, Baek-Hun;Kim, Seong-Ryul
    • Journal of the Korean earth science society
    • /
    • v.24 no.5
    • /
    • pp.467-476
    • /
    • 2003
  • For the seafloor acoustic image mapping of side scan sonar, the beginning step of the procedure is to fix the absolute sonar (tow-fish) position since the sonar is not hull mounted but towed astern. The technical algorithm used to calculate the actual sonar position without any other additional sub-system, i.e., the underwater acoustic position tracking system or the sonar attitude measuring device, was proposed. In the seafloor image mosaic mapping results using the sonar track (not ship track) developed in this study, any ambiguity or inconsistency of seafloor features was not found. The incidental effect from the sonar position determination procedure orients the towing direction of sonar to be smooth, consequently the swath pattern on the across-track direction becomes stable and the blanking phenomenon of the insonification area is reduced conspicuously. This technical method is considered to be an useful tool when applied toother underwater towing vehicle surveys.

Digital Processing and Acoustic Backscattering Characteristics on the Seafloor Image by Side Scan Sonar (Side Scan Sonar 탐사자료의 영상처리와 해저면 Backscattering 음향특성)

  • 김성렬;유홍룡
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.143-152
    • /
    • 1987
  • The digital data were obtained using Kennedy 9000 magnetic tape deck which was connected to the SMS960 side scan sonar during the field operations. The data of three consecutive survey tracks near Seongsan-po, Cheju were used for the development of this study. The softwares were mainly written in Fortran-77 using VAX 11/780 MINI-COMPUTER (CPU Memory; 4MB). The established mapping system consists of the pretreatment and the digital processing of seafloor image data. The pretreatment was necessary because the raw digital data format of the field magnetic tapes was not compatible to the VAX system. Therefore the raw data were read by the personal computer using the Assembler language and the data format was converted to IBM compatible, and next data were communicated to the VAX system. The digital processing includes geometrical correction for slant range, statistical analysis and cartography of the seafloor image. The sound speed in the water column was assumed 1,500 m/sec for the slant range correction and the moving average method was used for the signal trace smoothing. Histograms and cumulative curves were established for the statistical analysis, that was purposed to classify the backscattering strength from the sea-bottom. The seafloor image was displayed on the color screen of the TEKTRONIX 4113B terminal. According to the brief interpretation of the result image map, rocky and sedimentary bottoms were very well discriminated. Also it was shown that the backscattered acoustic pressurecorrelateswith the grain size and sorting of surface sediments.

  • PDF

Seafloor Classification Based on the Texture Analysis of Sonar Images Using the Gabor Wavelet

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.77-83
    • /
    • 2008
  • In the process of the sonar image textures produced, the orientation and scale factors are very significant. However, most of the related methods ignore the directional information and scale invariance or just pay attention to one of them. To overcome this problem, we apply Gabor wavelet to extract the features of sonar images, which combine the advantages of both the Gabor filter and traditional wavelet function. The mother wavelet is designed with constrained parameters and the optimal parameters will be selected at each orientation, with the help of bandwidth parameters based on the Fisher criterion. The Gabor wavelet can have the properties of both multi-scale and multi-orientation. Based on our experiment, this method is more appropriate than traditional wavelet or single Gabor filter as it provides the better discrimination of the textures and improves the recognition rate effectively. Meanwhile, comparing with other fusion methods, it can reduce the complexity and improve the calculation efficiency.

Depth-based Correction of Side Scan Sonal Image Data and Segmentation for Seafloor Classification (수심을 고려한 사이드 스캔 소나 자료의 보정 및 해저면 분류를 위한 영상분할)

  • 서상일;김학일;이광훈;김대철
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.133-150
    • /
    • 1997
  • The purpose of this paper is to develop an algorithm of classification and interpretation of seafloor based on side scan sonar data. The algorithm consists of mosaicking of sonar data using navigation data, correction and compensation of the acouctic amplitude data considering the charateristics of the side scan sonar system, and segmentation of the seafloor using digital image processing techniques. The correction and compensation process is essential because there is usually difference in acoustic amplitudes from the same distance of the port-side and the starboard-side and the amplitudes become attenuated as the distance is increasing. In this paper, proposed is an algorithm of compensating the side scan sonar data, and its result is compared with the mosaicking result without any compensation. The algorithm considers the amplitude characteristics according to the tow-fish's depth as well as the attenuation trend of the side scan sonar along the beam positions. This paper also proposes an image segmentation algorithm based on the texture, where the criterion is the maximum occurence related with gray level. The preliminary experiment has been carried out with the side scan sonar data and its result is demonstrated.

SIR analysis for Enhancing Image Quality in Underwater Acoustic Lens System (수중음향렌즈 카메라에서 영상 품질 향상을 위한 SIR 분석)

  • Lee, Jieun;Im, Sungbin;Shim, Taebo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.181-190
    • /
    • 2014
  • The underwater acoustic lens system is one of the systems getting high-resolution images on the seafloor by the beam forming method using acoustic lens. The beam forming using acoustic lenses reduces complexity and driving power. When receiving an incoming beam with the acoustic lens array, beam pattern analysis and arrangement problem of the array sensor must be addressed. Introducing SIR (Signal to Interference Ratio), the relationship among sensor interval, beam pattern and image quality would be analyzed. Generally if the sensor interval getting wider, the less effect of the side lobes makes SIR high. If the amplitude of a side lobe is high, SIR is generally getting low. The type of the apodization function changes the width, shape and amplitude of both main lobe and side lobes. Thus an appropriate apodization function can improve SIR. In this paper, SIR is stable at the sensor interval of 13mm with 0-10dB, which is not high relatively. By applying the Chebyshev function, the SIR becomes 80dB over the sensor interval of 37 mm or higher. The Hann and triangular functions demonstrate better SIR when the sensor interval becomes narrower.

Study of Imaging of Submarine Bubble Plume with Reverse Time Migration (역시간 구조보정을 활용한 해저 기포플룸 영상화 연구)

  • Dawoon Lee;Wookeen Chung;Won-Ki Kim;Ho Seuk Bae
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.8-17
    • /
    • 2023
  • Various sources, such as wind, waves, ships, and gas leaks from the seafloor, forms bubbles in the ocean. Underwater bubbles cause signal scattering, considerably affecting acoustic measurements. This characteristic of bubbles is used to block underwater noise by attenuating the intensity of the propagated signal. Recently, researchers have been studying the large-scale release of methane gas as bubble plumes from the seabed. Understanding the physical properties and distribution of bubble plumes is crucial for studying the relation between leaked methane gas and climate change. Therefore, a water tank experiment was conducted to estimate the distribution of bubble plumes using seismic imaging techniques and acoustic signals obtained from artificially generated bubbles using a bubble generator. Reverse time migration was applied to image the bubble plumes while the acquired acoustic envelope signal was used to effectively estimate bubble distribution. Imaging results were compared with optical camera images to verify the estimated bubble distribution. The water tank experiment confirmed that the proposed system could successfully image the distribution of bubble plumes using reverse time migration and the envelope signal. The experiment showed that the scattering signal of artificial bubble plumes can be used for seismic imaging.