• Title/Summary/Keyword: seabed interaction

Search Result 68, Processing Time 0.02 seconds

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution (중앙해령 및 섭입대 화산호 지역 해저열수광상의 광물·지구화학적 특성 고찰: 물-암석 상호작용 및 마그마 영향)

  • Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.465-475
    • /
    • 2022
  • The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.

Applicability of Permeable Submerged Breakwater for Discharged Flow Control (방류 흐름제어를 위한 투과성 잠제의 적용성 분석)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.51-60
    • /
    • 2016
  • The purpose of this study is to examine the control function of discharged flow due to the shape and plane arrangement of permeable submerged breakwater. For the discussion on it in detail, 3-dimensional numerical model based on PBM (Porous Body Model), which is able to simulate directly interaction of Fluid Permeable structure Seabed has been used to simulate water discharge in a NWT (Numerical Water Tank). To verify the applicability, LES-WASS-3D is analyzed comparing to the experimental result about propagation characteristics of dam-break wave through a permeable structure. Using the results obtained from numerical simulation, the effects of the shape and plane arrangement of submerged breakwater on reducing velocity and flow induction have been discussed related to the mean flow distribution and vertical distributions of horizontal velocities around ones.

Three-Dimensional Flow Characteristics and Wave Height Distribution around Permeable Submerged Breakwaters; PART II - with Beach (잠제 주변의 파고분포 및 흐름의 3차원 특성; PART II-해빈이 있을 경우)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.115-123
    • /
    • 2008
  • In the present study, a three dimensional hydrodynamic characteristics around the fully submerged dual breakwaters with a sand beach has been investigated numerically using a 3-D numerical scheme, which can determine the eddy viscosity with LES turbulence model and is able to consider wave-structure-seabed interaction in 3-dimensional wave field (LES-WASS-3D), recently developed by Hur and Lee (2007). Based on the numerical experiments, strong vortices can be generated fore and aft edges of the structures, and propagate lee sides. Thus relatively large circulation flows are occurred around submerged breakwaters. The 3-D flow hydrodynamic characteristics have been examined by mean flows and mean vortices for various x-y, x-z sections and y-z layers. Wave height distribution and wave set-up around and over submerged breakwaters, and breaking point migration toward shore side is discussed in detail.

Effect of the Slope Gradient of a Permeable Submerged Breakwater on Wave Field around It (투과성잠제의 비탈면경사가 주변 파동장에 미치는 영향)

  • Hur, Dong Soo;Choi, Dong Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.249-259
    • /
    • 2008
  • The present paper studies the effect of the slope gradient of a fully permeable submerged breakwater using a newly developed numerical model that is able to consider the flow through a porous midium with inertial, laminar and turbulent resistance terms, i.e. simulate directly WAve-Structure (submerged breakwater)-Sand seabed interaction and can determine the eddy viscosity with LES turbulence model in 2-Dimensional wave field (LES-WASS-2D). The developed model was validated through the comparison with an existing experimental data, and further used for various numerical experiments in oder to investigate the complicated hydrodynamics on the varying slope gradient of permeable submerged breakwater. We found an acceptable phenomenon, as we expect intuitively, that reflection and transmission coefficients decrease simultaneously as slope gradient decrease. In addition, the breaking point, the circulation flow and mean vorticity around a submerged breakwater are throughly discussed.

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters : PART I - Effect of Plane Arrangement of Submerged Breakwaters (잠제 설치 연안의 처오름 높이 특성 : PART I - 잠제의 평면배치에 의한 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.345-354
    • /
    • 2008
  • In this present study, we made a first attempt to investigate physical transformations of incident waves in surf and swash zone and hydrodynamic phenomena of detached and submerged breakwaters. For an accurate simulation of the complicated wave deformation, Three-Dimensional numerical model with Large Eddy Simulation has been developed recently and expanded properly for the current applications, which is able to simulate an accurate and direct WAve Structure Sandy seabed interaction (hereafter, LES-WASS-3D). LES-WASS-3D has been validated through the comparison with experimental results for limited cases, and has been used for the simulation of wave run-up on sandy beach, mean fluid flows over and around submerged structures and swash zone (alongshore/rip current), and spatial distribution of wave height in wide fluid regions. In addition, a strategy of efficient deployment ($Y/L_i=1.50{\sim}1.75$, $W/L_r=0.50$) of the submerged breakwaters has been discussed.

A Study on Estimation of the Course Keeping Ability of a Ship in Confined Waterways Using the MMG Model (MMG 모델을 이용한 제한수로를 운항하는 선박의 침로안정성능 추정에 관한 연구)

  • Kim, Hyunchul;Kim, In-Tae;Kim, Sanghyun;Kwon, Soo Yeon
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.369-376
    • /
    • 2019
  • Ship hydrodynamics in the confined waterways is challenging. When a ship is maneuvering in confined waterways, the hydrodynamic behavior may vary significantly because of the hydrodynamic interaction between the bottom of the ship hull and the seabed, or so-called shallow water effects. Thus, an accurate prediction of shallow water and bank effects is essential to minimizing the risk of the collision and the grounding of the ships. The hydrodynamic derivatives measured by the virtual captive model test provide a path to predicting the change in ship maneuverability. This paper presents a numerical simulation of captive model tests to predict the maneuverability of a ship in confined waterways. Also, straight and zig-zag simulation were conducted to predict the trajectory of a ship maneuvering in confined waterways. The results showed that the asymmetric flow around a ship induced by vicinity of banks causes pressure differences between the port and starboard sides and the trajectory of a ship maneuvering in confined waterways.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Design of a Decentralized Controller for Deep-sea Mining System (심해저 채광시스템에 대한 분산제어기 설계에 관한 연구)

  • Yeu, Tae-Kyeong;Park, Soung-Jea;Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.252-259
    • /
    • 2008
  • The deep-sea mining system is generally composed of surface vessel, lifting system, buffer, flexible pipe and miner. The mining system can be regarded as a large-scale system in which each subsystem is interconnected to other ones. In order to control a large-scale system, decentralized control approaches have been proposed recently. In this paper, as a basic study on application of decentralized control, firstly, the mining system was modeled in a simplified way. Lifting system and buffer were regarded as a spherical pendulum and the flexible pipe was taken as a two-dimensional linear spring connection. Based on the simplified model dynamics, the mining system can be decentralized two subsystems, the one consisting of surface vessel, lifting system and buffer, and the other, the miner. Next, this paper proposed the design of controller for each decentralized subsystem by regarding the interacting terms as disturbances. The controllers kept the constant distance between two subsystems during the miner was moving on the specified track. Finally, the efficiency of proposed controller was proven through the numerical simulation of the derived model.