• Title/Summary/Keyword: sea-to-air DMS flux

Search Result 5, Processing Time 0.019 seconds

Estimations and Long-term Trend of Sea-to-air Dimethyl Sulfide (DMS) Flux using Satellite Observation Data (인공위성 관측 자료를 이용한 해양-대기 DMS flux 추정 및 장기 추세 분석)

  • Choi, Yu-Na;Song, Sang-Keun;Han, Seung-Beom;Son, Young-Baek;Park, Yeon-Hee
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.181-194
    • /
    • 2017
  • The long-term linear trend of global sea-to-air dimethyl sulfide (DMS) flux was analyzed over a 16-year time span (2000~2015), based on satellite observation data. The emission rates of DMS (i.e. DMS flux) in the global ocean were estimated from sea surface DMS concentrations, which were constructed with chlorophyll a (Chl-a) concentrations and mixed layer depths (MLD), and transfer velocity from sea to air, which was parameterized with sea surface wind (SSW) and sea surface temperature (SST). In general, the DMS flux in the global ocean exhibited a gradual decreasing pattern from 2000 (a total of 12.1 Tg/yr) to 2015 (10.7 Tg/yr). For the latitude band ($10^{\circ}$ interval between $0^{\circ}$ and $60^{\circ}$), the DMS flux at the low latitude of the Northern (NH) and Southern hemisphere (SH) was significantly higher than that at the middle latitude. The seasonal mean DMS flux was highest in winter followed by in summer in both hemispheres. From the long-term analysis with the Mann-Kendall (MK) statistical test, a clear downward trend of DMS flux was predicted to be broad over the global ocean during the study period (NH: $-0.001{\sim}-0.036{\mu}mol/m^2/day\;per\;year$, SH: $-0.011{\sim}-0.051{\mu}mol/m^2/day\;per\;year$). These trend values were statistically significant (p < 0.05) for most of the latitude bands. The magnitude of the downward trend of DMS flux at the low latitude in the NH was somewhat higher than that at the middle latitude during most seasons, and vice versa for the SH. The spatio-temporal characteristics of DMS flux and its long-term trend were likely to be primarily affected not only by the SSW (high positive correlation of r = 0.687) but also in part by the SST (r = 0.685).

Dimethylsulfide (DMS) in the Coastal Areas of the Cheju Island, Korea (제주도 연안해역을 중심으로 한 DMS 농도의 관측)

  • 김기현;이강웅;허철구;강창희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.161-170
    • /
    • 1997
  • The concentrations of dimethylsulfide (DMS) were determined using samples collected from a station located at Kosan, Cheju Island during two field campaigns held in December 1996 and January 1997. The atmospheric DMS concentrations measured at 6-hr intervals during the entire campaign periods, after excluding a few extreme values, spanned in the range of 14 to 410 pptv with mean and 1 SD value of 127 $\pm$ 94 pptv (N=42). Between two month periods during which the field campaigns were conducted, a notable reduction in DMS levels was observed which was comparable to the dramatic shift in air temperature. A considerable difference was also noted in DMS levels, when data were grouped by day/night basis. The cause of unexpected, high day-to-night DMS ratios is best explained in terms of high efficiency of daytime source processes relative to low efficiency of nighttime sink processes due to the characteristics of the study location. The surface water DMS of the study site, although scarcely measured, also behaved similarly to its atmospheric counterpart with its range from 0.3 to 19 nM (N=11). When correlation analysis was conducted between the atmospheric DMS concentration and other concurrently determined parameters, significant correlations were observed from most basic meteorological parameters such as windspeed, relative humidy, and air temperature. However, the existence of "not-so-strong" correlations between air temperature and DMS concentrations relative to other ones indicated that the effect of temperature on DMS behavior must be reflected in more complicated manners at the study site. The sea-to-air flux of DMS was approximated through an application of the mass-balance flux calculation method of Wylie and de Mora (1996) under the assumption that sink mechanism within the marine boundary layer is in steady-state condition with its counterpart, source mechanism. Based on this estimation method, we reached a conclusion that oceanic DMS emitted from the southwest sea of the Korean Peninsula can amount to approximately 9 $\sim$ 36 Gg S $yr^{-1}$.$yr^{-1}$.

  • PDF

Evaluation of DMS Flux and Its Conversion to SO(sub)2 in Tropical ACE 1 Marine Boundary Layer

  • Shon, Zang-Ho;Taekyung Yoon;Kim, Jungkwon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.139-148
    • /
    • 2000
  • A mass balance/photochemical modeling approach was used to evaluate the sea-to-air dimethyl sulfide (DMS) fluxes in tropical regions and part of the Southern Ocean. The flux determinations were based on 10 airborne observations by ACE 1 transit flights (i.e., Flights 4-9 and 29-32). The DMS flux values for the tropical regions ranged from 1.0 to 7.4 $\mu$mole/$m^2$/day with an average estimate of 4.2$\pm$2.3 $\mu$mole/$m^2$/day. The seasonal variations in the DMS flux predicted for the equatorial Pacific Ocean based on atmospheric DMS measurements were not entirely consistent with those derived from seawater DMS measurements were not entirely consistent with those derived from seawater DMS measurements reported in previous literature. Inhomogeneities in the DMS flux field were found to cause significant shifts in the atmospheric DMS levels even in the same sampling location. Accordingly, no definitive statement can be made at this stage regarding systematic differences or agreements in the DMS flux estimates from the two approaches. Moreover, this study strongly suggests that DMS oxidation is the most likely dominant source of SO$_2$in tropical regions, which is also supported by another set of compiled observations. Finally, these SO$_2$observations indicate that, when significant data was available for both the boundary and buffer layers, the vertical SO$_2$gradient between these two zones was primarily negative.

  • PDF

Dimethylsulfide (DMS) in Seawater and the Overlying Atmosphere of the Masan Bay (해수 및 대기 중 DMS의 분석 : 마산만을 중심으로)

  • 김기현;오재룡;강성현;이수형;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.495-504
    • /
    • 1996
  • The concentrations of dimethylsulfide (DMS) were determined from both seawater and the overlying atmosphere from a station located in the Masan Bay area during a ten-day field campaign period of January 1996. The resulting data were also used to derive saturation ratios (SR) as well as sea-to-air fluxes of DMS. The concentrations and fluxes of DMS for both reservoirs varied extensively over two to three orders of magnitude: DMS in air and seawater were measured at 9 to 4,300 pptv (mean: 600 $\pm$ 1, 170, N=18) and at 0.24 to 10 nM (4.0 $\pm$ 3.4, N=13), respectively, while its fluxes were found from 0.02 to 23 mol $m^{-2} day^{-1} (3.1 \pm 6.8, N=11)$. A comparative analysis between our data and previously reported ones indicate that its atmospheric concentrations are abnormalously high, but its seawater counterparts are slightly lower than expected. In light of high pollution levels of organic-rich materials in and the associated high biological productivity of the study area, the sea-to-air-fluxes derived are notably low relative to those values typically reported from the coastal areas. These complicated features of DMS distributions/fluxes in the study site indicate that the near-by port- based anthropogenic activities from various industrial plants strongly interfere with natural processes leading to the production and release of DMS. It was however striking to find out relatively strong signals of diel cycle in its saturation ratios, concentration gradients between seawater and atmosphere, and the associated fluxes. Although it is yet difficult to provide meaningful explanations for the observed phenomena, the existence of clear diel cycle in some DMS-related parameters suggests that the natural processes may nonetheless exert important controls on the regional cycling of atmospheric sulfur species, of particular DMS.

  • PDF

Distribution of DMS Concenturation in the Atmosphere over Yellow Sea - Preliminary Measurements 1mm Duk-Juk Island (한국 황해지역의 DMS 분포특성에 대한 연구 - 덕적도를 중심으로)

  • Kim, Ki-Hyun;Kim, Ji-Young;Song, Ki-Bum;Kim, Na-Young;Lee, Gang-Woong;Bae, Gwi-Nam
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2000
  • This study was performed to accumulate database for natural sulfur emissions in the Yellow Sea region of Korea. The atmospheric concentrations of dimethylsulfide(DMS) were measured during two intensive field experiments (April and September 1999) from Duk-Juk Island located in the Yellow Sea. Ship-measurement of DMS was made additionally between Chungdo(China) and Inchun(Korea) across the Yellow Sea during June 1999. The mean(and ISD) of DMS concentrations in Duk-Juk Island during two field campaigns was $24.0{\pm}40.5$(n=40, April) and $61.1{\pm}37.9$ pptv(n=35, September), respectively. The atmospheric DMS measured from ship experiments was generally low and close to the background concentrations in the open sea area. The temporal distributions of DMS concentration were complicated in some sense but comparable to those of ambient meteorological parameters. On the basis of our measurements of atmospheric DMS(and evidence found from previous studies), the sea-to-air flux of DMS in the Yellow Sea is estimated to be about 4Gg S/yr. This amount of natural S emissions is relatively lower than the estimates derived for Cheju Island. Therefore, additional experiments may be desperate to derive more reliable figures for natural sulfur emissions in the Yellow Sea region.

  • PDF