• Title/Summary/Keyword: sea-sand

Search Result 627, Processing Time 0.033 seconds

Effects of Size and Environmental Condition on Burrowing of Artificial Seedling of Ark Shell, Scapharca broughtonii (Schrenck) (피조개, Scapharca broughtonii (Schrenck) 인공치패의 크기 및 환경조건이 잠입에 미치는 영향)

  • Kim, Byeong-Hak;Shin, Yun-Kyung;Choi, Nack-Joong;Oh, Bong-Se;Sohn, Sang-Gyu;Jung, Choon-Goo;Son, Tai-Sun;Kang, Kyoung-Ho
    • The Korean Journal of Malacology
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The influence of individual size, sediment, gain size, water temperature, salinity and air exposure on burrowing rate was investigated in order to obtain the basic biological data on applying shellfish farm for a sustainable production of ark shell, Scapharca broughtonii (Schrenk). The burrowing rate on individual size 300 minutes after starting the experiment was the highest in the shell length $16.3\;{\pm}\;1.2\;mm$, 97.7%. The highest burrowing rates were 97.0% in $12.8\;{\pm}\;0.8\;mm$, 96.7% in $9.2\;{\pm}\;1.0\;mm$, and 96.3% in $5.9\;{\pm}\;0.7\;mm$. The clams over 6 mm of shell length had burrowing ability and the burrowing rate was not related to the shell size. The burrowing rate depending on the kind of grain at the bottom after 300 minutes was the highest, 98.3%, in the mixture of sand and silt with a ratio of 75:25. The rates were 98% in silt (100%), 97.3% in mixture sand and silt with a ratio of 50:50, 97.3% in sand and silt ratio of 25:75, and 86.3% in sand (100%) in this specific order. On grain size of the soil in the seafloor, the burrowing rates after 300 minutes was at its highest in the group of sand in pore size 1 mm with 85.0%, and the $12\;{\mu}m$ to 1 mm in the grain size was fitted to burrowing of artificial seed. In the case of water temperature, the burrowing rates were at its highest after 300 minutes. In $30^{\circ}C$ group, the rate was 96.7% and in $25^{\circ}C$ and $20^{\circ}C$, 90.0%. The rates decreased as the water temperature decreased below $15^{\circ}C$. The burrowing rates on salinity were the highest in 30 psu with 93.3% and at 15 psu and below, there was no noticeable change in the burrowing rate. On air exposure, the burrowing rates after 300 minutes were the highest in 1 hour with 93.3%, and remarkably decreased as air exposure time is longer after 12 hours of air exposure.

  • PDF

Origin of Sandstone Fragments Within Core Sediments Obtained from Southwestern Continental Shelf of the Ulleung Basin, East Sea (동해 울릉분지 남서부 대륙붕에서 채취된 시추퇴적물내 사암편의 기원)

  • Lee, Eui-Hyeong;Lee, Yong-Kuk;Shin, Dong-Hyeok;Huh, Sik;Kim, Seong-Ryul;Jeong, Baek-Hoon;Han, Sang-Joon;Chun, Jong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.126-134
    • /
    • 2001
  • Several angular sandstone fragments (about 7 cm in longest diameter) occur in two piston cores, obtained from the submarine trough in the northeastern part of Korea Strait. The origin of the sandstone fragments and the paleoenvironment of trough sediment could be suggested from sedimentary facies analysis of cores and identification of ostracod within sandstone fragments. Echo characteristics around two core sites in submarine trough represent the prolonged bottom echoes with diffuse or no subbottom reflectors. The cores consist of a lower bioturbated mud and an upper gravelly sand sediments with sandstone/shell fragments. The bioturbated mud sediments show low water contents (27-44%) and high shear strength (19.2->37 kPa) compared with those of Holocene sediments (60-219% and 1.0-2.7 kPa, respectively) in the inner shelf and continental slope. However, clay contents (48-56%) of the bioturbated mud sediments are similar to those of fluviatile Holocene sediments in the inner shelf. The mean grain size of gravelly sand sediments ranges from 2.3 to 3.0 ${\phi}$ and shows coarsening upward with sandstone/shell fragments. The Holocene palimpsest in the continental shelf are composed of muddy sand sediments or sandy mud sediments (mean grain size: 4.6-7.6 ${\phi}$). Those suggest that two core sediments might be formed from Paleofluvial and paleocoastal deposits during sea-level lowstand. However, sandstone fragments mainly consist of quartz grains and bioclasts, with carbonate matrix, hollow pore, and glauconite. Two extinct ostracod species, Normanicythere sp. and Kotoracythere sp., are recovered in the sand-stone fragments of core EP-7, and they continued to exist from late Pliocene to early Pleistocene in cold water environment of this area. Thus, the sandstone fragments are interpreted to be formed at the paleocoastal environment derived from the Plio-Pleistocene outcrops exposed around the submarine trough during the LGM (Last Glacial Maximum) period.

  • PDF

Impact Assessment of Sea_Level Rise based on Coastal Vulnerability Index (연안 취약성 지수를 활용한 해수면 상승 영향평가 방안 연구)

  • Lee, Haemi;Kang, Tae soon;Cho, Kwangwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.304-314
    • /
    • 2015
  • We have reviewed the current status of coastal vulnerability index(CVI) to be guided into an appropriate CVI development for Korean coast and applied a methodology into the east coast of Korea to quantify coastal vulnerability by future sea_level rise. The CVIs reviewed includes USGS CVI, sea_level rise CVI, compound CVI, and multi scale CVI. The USGS CVI, expressed into the external forcing of sea_level rise, wave and tide, and adaptive capacity of morphology, erosion and slope, is adopted here for CVI quantification. The range of CVI is 1.826~22.361 with a mean of 7.085 for present condition and increases into 2.887~30.619 with a mean of 12.361 for the year of 2100(1 m sea_level rise). The index "VERY HIGH" is currently 8.57% of the coast and occupies 35.56% in 2100. The pattern of CVI change by sea_level rise is different to different local areas, and Gangneung, Yangyang and Goseong show the highest increase. The land use pattern in the "VERY HIGH" index is dominated by both human system of housing complex, road, cropland, etc, and natural system of sand, wetland, forestry, etc., which suggests existing land utilization should be reframed in the era of climate change. Though CVI approach is highly efficient to deal with a large set of climate scenarios entailed in climate impact assessment due to uncertainties, we also propose three_level assessment for the application of CVI methodology in the site specific adaptation such as first screening assessment by CVI, second scoping assessment by impact model, and final risk quantification with the result of impact model.

백악기 미국 걸프만 퇴적층의 지구조적, 퇴적학적, 석유지질학적 고찰 (A Review of Tectonic, Sedinlentologic Framework and Petroleum Geology of the Cretaceous U. S. enlf Coast Sedimentary Sequence)

  • Cheong Dae-Kyo
    • The Korean Journal of Petroleum Geology
    • /
    • v.4 no.1_2 s.5
    • /
    • pp.27-39
    • /
    • 1996
  • In the Cretaceous, the Gulf Coast Basin evolved as a marginal sag basin. Thick clastic and carbonate sequences cover the disturbed and diapirically deformed salt layer. In the Cretaceous the salinities of the Gulf Coast Basin probably matched the Holocene Persian Gulf, as is evidenced by the widespread development of supratidal anhydrite. The major Lower Cretaceous reservoir formations are the Cotton Valley, Hosston, Travis Peak siliciclastics, and Sligo, Trinity (Pine Island, Pearsall, Glen Rose), Edwards, Georgetown/Buda carbonates. Source rocks are down-dip offshore marine shales and marls, and seals are either up-dip shales, dense limestones, or evaporites. During this period, the entire Gulf Basin was a shallow sea which to the end of Cretaceous had been rimmed to the southwest by shallow marine carbonates while fine-grained terrigengus clastics were deposited on the northern and western margins of the basin. The main Upper Cretaceous reservoir groups of the Gulf Coast, which were deposited in the period of a major sea level .rise with the resulting deep water conditions, are Woodbinefruscaloosa sands, Austin chalk and carbonates, Taylor and Navarro sandstones. Source rocks are down-dip offshore shales and seals are up-dip shales. Major trap types of the Lower and Upper Cretaceous include salt-related anticlines from low relief pillows to complex salt diapirs. Growth fault structures with rollover anticlines on downthrown fault blocks are significant Gulf Coast traps. Permeability barriers, up-dip pinch-out sand bodies, and unconformity truncations also play a key role in oil exploration from the Cretaceous Gulf Coast reservoirs. The sedimentary sequences of the major Cretaceous reseuoir rocks are a good match to the regressional phases on the global sea level cuwe, suggesting that the Cretaceous Gulf Coast sedimentary stratigraphy relatively well reflects a response to eustatic sea level change throughout its history. Thus, of the three main factors controlling sedimentation (tectonic subsidence, sediment input, and eustatic sea level change) in the Gulf Coast Basin, sea-level ranks first in the period.

  • PDF

A Experimental Study on the Material Charateristics of Crushed Aggregate Produced in Quarry (석산에서 생산되는 부순골재의 재료 특성에 관한 연구)

  • Baek Dong-Il;Youm Chi-Sun;Kim Myung-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.569-579
    • /
    • 2005
  • An investigation for long-term strength characteristics of crushed sand concrete using crushed sands produced in Yang-san, Kim-hae and Jin-hae that can be assumed to respectively represent eastern, middle and western suburbs of Busan has been carried out. Concrete is composed of 70~80% of aggregates in whole volume so the effect of aggregates quality to the characteristics of concrete is very important. Since 1980s, aggregates used in concrete have already been substituted crushed stone because of the exhaustion of natural gravel and sand. Crushed sand tends to increase in using quantity because of the prohibition of sea sand picking and deterioration of river sand. Crushed sand is blended with river sand in order to investigate the quality changes and characteristics of concrete as variation of blend ratio of crushed sand (n, 50, 70, 80, 90, 100%). Slump and air content were measured to investigate the properties of fresh concrete. Unit weight, compressive strength and modulus of elasticity in age of 7, 28, 60, n, 180 days were measured to investigate properties of hardened concrete. Compressive strength, unit weight and modulus of elasticity were increased with a passage of time and they are expected to keep on increasing in long-term age as well. The experimental results of the qualifies of crushed aggregates in each producing area, were all satisfied with Korea Standard. The results of the measurement of slump exposed that slump preferably decreased as mixing rate increased till 70~80% but it increased to mixing rate 70~80%. The air content was exposed that it decreased by micro filler phenomenon according to that crushed sand b)ended ratio increased. According to the result of measuring unit weight in age of 7, 28, 60, 90, 180days, it increased in accordance with that blended ratio of crushed aggregates increases. As a result of measuring compressive strength and modulus of elasticity in age of 7, 28, 50, 90, 180days, compressive strength was highest when it is 70% of blended ratio.

Impact of Sluice Gates at Stream Mouth on Fish Community (하구의 배수갑문 설치 유무가 어류군집에 미치는 영향)

  • Kim, Jun-Wan;Kim, Kyu-Jin;Choi, Beom-Myeong;Yoon, Ju-Duk;Park, Bae-Kyung;Kim, Jong-Hak;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.49-59
    • /
    • 2022
  • Total of 325 estuaries in Korea were surveyed to analyze the effect of presence of sluice gate on the estuary environment and fish community from 2016 to 2018. Fish community in closed and open estuaries showed differences generally, and the relative abundance (RA) of primary freshwater species in the closed and migratory species in the open estuaries were high. The result of classifying species by habitat characteristics in closed and open estuaries showed similar tendencies at the estuaries of south sea and west sea. The relative abundances of primary freshwater species in the closed estuaries at the estuaries of south sea and west sea were the highest, but estuarine and migratory species were high in both closed and open estuaries at the estuaries of east sea. Primary freshwater species showed higher abundances in the closed estuaries with reduced salinity due to blocking of seawater since they are not resistant to salt. However, primary freshwater species in open estuaries at east sea was higher than that of the closed estuaries, which is considered to be the result of reflecting the characteristics (tide, sand bar, etc.) of the east sea. Korea Estuary Fish Assessment Index (KEFAI) was showed to be higher at open estuaries than closed in all sea areas (T-test, P<0.001), the highest KEFAI was observed in closed estuaries at south sea, and open estuaries in east sea. Fish community of closed and open estuaries in each sea areas showed statistically significant differences (PERMANOVA, East, Pseudo-F=3.0198, P=0.002; South, Pseudo-F=22.00, P=0.001; West, Pseudo-F=14.067, P=0.001). Fish assemblage similarity by sea areas showed a significant differences on fish community in closed and open estuaries at east sea, south sea, and west sea (SIMPER, Group dissimilarity, 85.85%, 88.36%, and 88.05%). This study provided information on the characteristics and distribution of fish community according to the types of estuaries. The results of this study can be used as a reference for establishing appropriate management plans according to the sea areas and type in the management and restoration of estuaries for future.

Considerations of Permeability of Converter Slag for Recycling (재활용을 위한 전로슬래그의 투수성 고찰 (I))

  • 이광찬;이문수
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.69-83
    • /
    • 1999
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory. The effects of grain size, flow water time and aging were investigated using sea and fresh water. In the case of converter slag submerged with fresh water, the coefficients of permeability in A and B samples less than 10 mm grain sizes were measured as $6.52\times10^{-2}cm\; per\; sec\; and\; 5.99\times10^{-1}/cm$ per sec respectively, while they were $1.88\times10^{-2}/cm\; per\; sec,\; 3.86\times10^{-1}/cm$ per sec respectively under sea water condition. Also, the condition of turbulent flow may exit and was experimentally identified from the relationship between hydraulic gradient and seepage velocity. After 100 days under sea water condition, the coefficients of permeability of A and B samples decreased ten times than initial values. The reduction of permeability coefficient was considered to result from the filling of voids in high-calcium quicklime(CaO).

  • PDF

Photosynthesis and Respiration of Forage Plants under Saline Stress (Saline Stress 하에서의 사료작물의 광합성 및 호흡)

  • 김충수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.4
    • /
    • pp.362-369
    • /
    • 1990
  • In order to determine the mechanism of saline stress, forage plants were irrigated with sea water. Saline stress was investigated on photosynthesis, root respiration, evapotranspiration and visual symptoms. All crops showed increased relative evapotranspiration and relative photosynthesis under low temperature (11-16$^{\circ}C$) rather than high temperature (22-24$^{\circ}C$). The correlation coefficients calculated for each crop between relative evapotranspiration and root respiration were 0.996$\^$**/ for orchard grass, 0.828$\^$*/ for alfalfa and 0.963$\^$**/ for white clover. No significant correlation coefficient between relative evapotranspiration and root repiration was found for the tall fescue. The effects of OED spray on the evapotranspiration and root respiration of crops in the sea watered pots were low compared with those in the fresh watered pots. When OED was sprayed and zeolite was used, the evapotranspiration and root respiration were low compared with check pots and sand pots. The root damage due to sea water treatment was characterized by brown colored root cortex in orchard grass and tall fescue, and water penetration of root cortex in alfalfa and white clover.

  • PDF

Seaweed Community of the Subtidal Rocky Habitats along the Coast of Geumo Archipelago in the Central South Sea of Korea (한국 남해중부 금오열도 연안 암반 조하대 해조군집의 구조)

  • Kang, Rae-Seon;Kim, Jong-Man
    • ALGAE
    • /
    • v.19 no.4
    • /
    • pp.339-347
    • /
    • 2004
  • Seaweed community of the sub tidal rocky habitats along the coast of Geumo Archipelago in the central South Sea of Korea is described. This area is characterized by archipelago in which islets are separated by shallow bottom sediments (primary, muddy sand), and turbidity is generally high due to the resuspension of bottom sediments. The hard substrata available for algal attachment are limited to less than 10 m in depth. Thirty sites were randomly chosen along the coast from August 2003 to September 2003 and a 50 m long transect was established at each site. The transect began at a depth of 1 m and ended at the depth of 9 m. The percent cover of all species other than crustose coralline algae was estimated at 2 m depth intervals along the transect using a 0.25 m$^2$ PVC quadrat with 25 squares. Thirty-six species were identified including 6 Chlorophyta, 10 Phaeophyta and 20 Rhodophyta. Species with more than 5% mean bottom cover were Gelidium amansii, Corallina pilulifera, Amphiroa dilatata and Carpopeltis cornea, which formed dense turf-forming algal assemblages at 1-5 m depth. At all sites except S11-S15 located in the western coast of Sorido, bottom covers of seaweed species at the depth deeper than 7 m were less than 6%. The lower limit of algal assemblages was 9 m in depth. We speculate that the limited water clarity and vertical extent of hard substrata available for the settlement of seaweed species are the direct cause of reducing the diversity, abundance and distributional extent of algal assemblages in the area.

Sedimentary Environments in the Hwangdo Tidal Flat, Cheonsu Bay (천수만 황도 갯벌의 퇴적환경)

  • Woo, Han Jun;Choi, Jae Ung;Ryu, Joo-Hyung;Choi, Song-Hwa;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.53-67
    • /
    • 2005
  • Cheonsu bay, which is typically a semi-closed type, is characterized by various environments such as channels, sand bars, small islands and tidal flats. The construction of Seosan A and B sea dikes from 1983 to 1985 might continuously change sedimentary environments in the northern part of the bay. In order to investigate sedimentary environment, surface and core sediments were sampled at the Hwangdo tidal flat and adjacent sea in June and October 2003. The surface sediments consisted of five sedimentary facies. Generally, the surface sediments in October were changed coarser on the tidal flat and little changed in the subtidal area compared to those in June 2003. Sedimentary facies analysis of three core sediments suggested that wave and tidal current were relatively strong in the tidal flat near Hwangdo, whereas the energy was relatively low in the tidal flat near channel. Sediment accumulation rates in the Hwangdo tidal flat during 11 months indicated that sediments deposited in the central part, whereas eroded in eastern and western sides of the tidal flat. These caused that sea dike changed tidal current patterns and sediment supplies.

  • PDF