• 제목/요약/키워드: sea wave

Search Result 1,216, Processing Time 0.029 seconds

Wave Friction Factor far Rough Turbulent Flow (전난류에서의 파마찰계수)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.51-57
    • /
    • 1993
  • It is often assumed that the wave velocity at the bottom given by potential wave theory il the same as the wave velocity at the top of the turbulent boundary layer. This assumption is found to be the major cause of the error detected by recent elaborate theories and numerical models for the description of velocity profile near the sea bottom. A relationship is suggested between the potential velocity and the real boundary velocity. Based on this relation, the existing theories of Jonsson (1967) and Fredsoe (1984) are refined for the estimation of wave friction factor, and the computation results of the modified theories are favourably compared with the published laboratory results.

  • PDF

The Theory of Boundary Distribution of the Plant and Wave Character of the Timber Line on Mt. Paektu (식물의 경계분포 이론과 백두산 삼림한계량의 파동성)

  • 장남기;심규철;이현욱;강경미;소금현
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_2
    • /
    • pp.491-499
    • /
    • 1998
  • An investigation was performed to establish the mathematical theories of a vibration for the plant growth and a wave distribution of a plant population on the boundary condition of a limiting factor in the environment. The mathematical theories of the plant growth vibration and wave distribution had been elucidated by the plant growth and the timber line on the middle slope of the west side of Mt. Paektu. The Betula ermaruii composes the timber line on about 2,060 m elevation of sea label, has a growth vibration on the ground surface and takes a wave distribution due to a boundary condition of alpine temperature gradient.

  • PDF

Present State of Self-Rectifying Air Turbines for Wave Energy Conversion

  • Setoguchi, Toshiaki;Takao, Manabu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.3-12
    • /
    • 2003
  • This paper reviews the present state of the art on the self-rectifying air turbines, which could be used for wave energy conversion. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been evaluated numerically and compared from the viewpoints of the starting and running characteristics. The types of turbine included in the paper are as follows: (a) Wells turbine with guide vanes (WTGV); (b) turbine with self-pitch-controlled blades (TSCB); (c) biplane Wells turbine with guide vanes (BWGV); (d) impulse turbine with self-pitch-controlled guide vanes (ISGV) and (e) impulse turbine with fixed guide vanes (IFGV). As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, the authors have explained the mechanism of hysteretic behavior of the Wells turbine and the necessity of links for improvement of the performance of ISGV.

  • PDF

Numerical Analysis of Waves Profiles coming with Oblique Angle to Permeable Submerged Breakwater on the Porous Seabed

  • Kim, Nam-Hyeong;Woo, Su-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.275-276
    • /
    • 2013
  • This analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and porous structures. Wave profiles coming with oblique angle to permeable submerged breakwater on the porous seabed are computed numerically by using boundary element method. When compared with the existing results for the oblique incident wave, the results of this study show good agreement. The results indicate that wave profiles own high dependability regarding the change of oblique incident waves and permeable submerged breakwater on the porous seabed. Therefore, the analysis method of this study are estimated to be applied as an accurate numerical analysis referring to oblique incident waves and permeable submerged breakwater on the porous seabed in real sea environment.

  • PDF

Numerical analysis of acoustic field inside sonar dome by using a beam tracing method and the theory of elastic wave propagation (빔 추적기법과 다층구조에서의 탄성파 전파이론을 적용한 소나돔 내부 음장 수치해석)

  • Han, Seung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.26-33
    • /
    • 2006
  • A sonar dome is basically designed and installed to protect sonar array from shocks, sea wave slaps and floating matters. The acoustic wave passing through sonar dome, however, can be distorted in magnitude and phase. This paper presents a numerical method for predicting the steady-state sound pressure on the surface of transducer array in the sonar dome and typical results of sonar beam pattern affected by sonar dome. A beam tracing model with phase information and a multi-layered elastic boundary model are involved. A full three-dimensional sonar dome is modeled as a GRP acoustic window, a rubber coated steel baffle and a rubber coated steel hull. A transducer array is modeled as thick steel cylinder. There are some assumptions such as incidence of plane wave, specular reflection on boundary and directionality of transducer element.

Oscillating Water Column (OWC) Wave Energy Converter Part 1: Fixed OWC

  • Yang, Hyunjai;Jung, Hyen-Cheol;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.280-294
    • /
    • 2022
  • This study reviews the recent development and research results of a fixed oscillating water column (OWC) wave energy converter (WEC). The OWC WEC can be divided into fixed and floating types based on the installation location and movement of the structure. In this article, the study on a stationary OWC WEC, which is close to commercialization through the accumulation of long-term research achievements, is divided into five research categories with a focus on primary energy conversion research. These research categories include potential-flow-based numerical analysis, wave tank experiments, computational fluid dynamics analyses toward investigation of fluid viscous effects, U-shaped OWC studies that can amplify water surface displacement in the OWC chamber, and studies on OWC prototypes that have been installed and operated in real sea environments. This review will provide an overview of recent research on the stationary OWC WEC and basic information for further detailed studies on the OWC.

Dynamic Analysis of Spar Hull Transportation

  • Lee, Jong-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.867-873
    • /
    • 2011
  • The transportation of a truss-spar hull from a transport barge of 6000 ton topside module on the spar hull is investigated in the present study. Two possible routes from a fabrication yard in Teeside, England to the Gulf of Mexico are considered in the paper. The results of motion responses of the transport barge obtained from a spectral analysis and the limiting criteria of sea fastening, deck wetness and lateral acceleration are compared and the route selection is discussed. Long-crested waves and short-crested seas as well as the joint probabilities of significant wave heights and wave periods in different sea areas are considered. Generally speaking, the results for long-crested seas are higher than those for short-crested waves.

Surface Waves and Bottom Shear Stresses in the Yellow Sea (黃海에서의 波浪과 海底剪斷應力)

  • Kang, See Whan;Cho, Jei Kook
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.118-124
    • /
    • 1984
  • The amplitudes and periods of wind-driven, surface gravity waves in the Yellow Sea, were calculated using the SMB hindcasting method. Bottom orbital velocities and bottom shear stresses were then calculated on the basis of linear wave theory and Kajiura's (1968) turbulent oscillating boundary layer analyses. These calculations were made for northwesterly and southwesterly winds with a steady speed of 40 knots. The numerical results show that the wide offshore areas along the western Korean Peninsula are persistently subjected to the strong wave action and bottom shear stresses produced by the prevailing winds.

  • PDF

A Study on the Survivability Assessment System of Damaged Ships (손상선박의 생존성 평가 시스템에 관한 연구)

  • Lee, Dong-Kon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.2
    • /
    • pp.34-40
    • /
    • 2003
  • Ship damage due to maritime casualties lead to marine pollution, loss of life and properties. The maritime casualties come from the rough sea and bad weather condition generally. Therefore the large-scaled casualties will be derived from loss of structural strength and stability due to the progressive flooding and enlargement of damage by the effect of wave and wind. The improvement of damage survivability is very important in maritime safety This paper described the damage survivability assessment system which can be evaluate and improve the ship safety in consideration of loading, sea and damage condition. The components of the system and decision criteria for damage stability and structural safety is established. The ship modeler and behavior analysis program in wave is developed. Finally further research work is also discussed.

Comparison of CFD simulations with experimental data for a tanker model advancing in waves

  • Orihara, Hideo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, CFD simulation results for a tanker model are compared with experimental data over a range of wave conditions to verify a capability to predict the sea-keeping performance of practical hull forms. CFD simulations are conducted using WISDAM-X code which is capable of unsteady RANS calculations in arbitrary wave conditions. Comparisons are made of unsteady surface pressures, added resistance and ship motions in regular waves for cases of fully-loaded and ballast conditions of a large tanker model. It is shown that the simulation results agree fairly well with the experimental data, and that WISDAM-X code can predict sea-keeping performance of practical hull forms.