• Title/Summary/Keyword: sea sand concrete

Search Result 113, Processing Time 0.027 seconds

A Study on the Use of Pit Sand and Sea Sand as the Fine Aggregate in Concrete (콘크리트용 잔골재로서 산사.해사의 활용방안에 관한 연구)

  • 윤상대;신의근;배수호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.40-45
    • /
    • 1993
  • Due to the recent shortage of river sand resulting from a rapid growth of concrete construction, sea sand and pit sand are increasingly used in stead. It is , however, well noted that non-washed sea sand used in reinforced concrete causes to corrode reinforcing steel and to incur cracks in concrete, and thus eventually result in damage to concrete. Moreover, many sources of pit sand in our country are randomly used without experimental research for its applicability to concrete construction. The purpose of this research to activate the usage of pit sand and sea sand for concrete construction to solve the recent shortage of river sand. Followings have been experimentally investigated : 1)Physical properties of pit sand and sea sand, 2)Compressive strength of mortar on the weight of pit sand passing through No.200 sieve, 3) Compressive strength of mortar on the chloride content of sea sand, 4) Compressive strengths of concrete using pit sand and sea sand, respectively, 5)Corrosion propagatio in reinforcing steel on the chloride concent, of sea sand, and 6)etc.

  • PDF

An Experimental Study on the Characteristics of Antiwashout Underwater Concrete Using Sea Sand (해사를 사용한 수중불분리콘크리트의 특성에 관한 실험적 연구)

  • 김명식;백동일;어영선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.76-82
    • /
    • 1997
  • Recently as the development of a large-scale ocean structure or ocean is in progress, the importance of underwater concrete construction came to the fore. However, a problem with this underwater concrete construction is the segregation of cement and aggregate occurs when concrete is poured into the underwater. However, recently as an adhesiveness of the constituents of fresh concrete is increased even in our country, antiwashout concrete admixture were developed. The antiwashout concrete admixture can reduce the segregation significantly. Although this antiwashout underwater concrete is superior to the traditional underwater concrete in terms of durability, watertightness, stability, etc. But it is still unsatisfied due to the lack of criterion or construction experiences. Furthermore, because of an insufficiency of natural aggregate, the development of replacing aggregate came to be necessary. Accordingly, the purpose of this study is to investigate the feasibility of sea sand as a replacing aggregate and the characteristic change of antiwashout underwater concrete using river sand, sea sand, and blended sand (river sand:sea sand=3:7) through experimental researches.

  • PDF

Investigation on Properties of Concrete with Crushed Sand on Site (부순모래를 사용한 콘크리트의 현장 품질 특성에 관한 실험 연구)

  • Lee, Sung-Bok;Lee, Do-Heon;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.107-112
    • /
    • 2003
  • This study is to investigate the properties of concrete with crushed sand on site and to propose a quality guideline for its use as artificial sand and concrete. From our experimental result in laboratory and site, we found that demand water of concrete with crushed sand for target slump increased by 18kg/m3 compared to mixed sand and l8kg/m3 compared to sea sand respectively. The compressive strength increased by around 3∼6% when compared to concrete with sea sand. Accordingly, our study showed that the combined sand mixed with sea sand would be desirable to obtain workability and strength of concrete including dry shrinkage and bleeding test. Furthermore, the optimal replacement percentage of crushed sand was 50% with sea sand. As such, crushed sand would be sufficient as fine aggregate for concrete in terms of economic efficiency and quality. Crushed sand, on the other hand can only be used as fine aggregate when VFS(Very Fine Sand) is below 3.5 percentage of weight of sand and particle shape is above 55 percentage. Also, the particle shape and microsand passing NO.200 sieve should continually be improved to increase workability of concrete on site.

A Study on the Accelerated Carbonation of the Concrete Using Sea Sand for Fine Aggregate (해사를 잔골재를 사용한 콘크리트의 촉진중성화에 관한 연구)

  • Shin, Sang-Tae;Yoo, Taek-Dong;Choi, Ki-Bong;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.163-171
    • /
    • 1999
  • In this study, we executed fundamental experiment to investigate properties of accelerated carbonation with changing chloride content of concrete used sea sand in order to examine durability. So we obtained the results of following properties of mechanics, durability, concrete with sea sand, determined concrete w/C 30%, 40%, 50%, and fine aggregate 40% and changing containing chloride 0, 0.3, 0.6, $0.9kg/m^3$ by the experiment of accelerated neutralization. The results of this study as follows: 1) As result of changing chloride content of concrete used sea sand augmented in stages $0.3kg/m^3$, accelerated carbonation was increased as increment chloride content. The increment depth was decreased as it went long term age. It was shown the chloride content effected increment of carbonation depth in concrete 2) As a result of changing W/C of concrete used sea sand augmented in stages 10% at a time from 30% to 50%, accelerated carbonation depth of concrete was increased as W/C ratio. 3) As the carbonation concrete used sea sand, compressive strength between 8 weeks and accelerated carbonation depth of 1 weeks, 2 weeks, 4 weeks, 8 weeks was inversion proportion.

  • PDF

Study on the Properties of Antiwashout Underwater Concrete with Variation of Mixing Proportion of Fine Aggregate Types (잔골재의 혼합비율 변화에 따른 수중불분리성 콘크리트의 특성에 관한 연구)

  • 배원만;박세윤;백동일;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.533-536
    • /
    • 2003
  • The objective of in this study makes investigation into the characteristics of antiwashout underwater concrete as to mix proportion, casting and curing water through experimental researches. in this study, sea sand is blended with river sand, crushed sand is blended with river sand and sea sand as to investigate the quality change and characteristics of antiwashout underwater concrete with variation of blend ratio of sea sand and crushed sand(0, 20, 40, 60, 80, 100%). Higher compressive strength is measured following the order of river sand, sea sand, crushed sand regardless of age and casting condition. Except for case of using river sand, blended ratio of 40% is appeared on most compressive strength.

  • PDF

Application of Concrete with Crushed Sand on Site (부순모래 콘크리트의 현장 적용성)

  • 이성복;이도헌;최진만;김병환;박창수;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.147-152
    • /
    • 1998
  • This study is to investigate the application of concrete with crushed sand on site. As a result, it is showed that the combined sand mixed with sea sand is very desirable for obtaining workability and strength of concrete, and the optimal replacement percentage of crushed sand is 50% with sea sand. After all, the crushed sand could be sufficiently used as a fine aggregate for concrete in the aspect of economical efficiency and quality, but the particle shape and microsand passing No.200 sieve should be firstly improved for increasing workability of concrete on site.

  • PDF

The Study on Fluidity and Strength Properties of High Strength Concrete Utilizing Crushed Sand (부순모래를 사용한 고강도콘크리트의 유동성 및 강도특성에 관한 연구)

  • Shin, Hong-Chol;Park, Sang-Joon;Ahn, Nam-Shik;Lee, Eui-Hak;Kang, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.383-386
    • /
    • 2005
  • This paper is to investigate the effect of W/B, blend ratio of crushed sand with sea sand on fluidity and strength properties of high strength concrete utilizing crushed sand. W/B set up 0.25, 0.30, 0.35 and the blend ratio of crushed sand with sea sand set up 0:100, 30:70, 50:50, 70:30, 100:0 The results of this study are summarized as the follows; 1) The increase of the blend rate of crushed sand, affected on the enhancement of flow, the increase of dosage of SP and water content, but the decrease S/a 2) Compressive strength is increased when crushed sand $30\~70\%$ was replaced with sea sand. 3) The optimal replacement percentage of crushed sand is $50\%$ with sea sand.

  • PDF

An Experimental Study on Corrosion Resistance of Concrete Using Sea Sane) (해사를 사용한 콘크리트의 내부식 성능에 관한 실험적 연구)

  • 배수호;윤상대;신의균;박광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.152-157
    • /
    • 1994
  • Due to the recent shortage of river sand resulting from a rapid growth of concrete construction, sea sand is increasingly used in stead. It is, however, well noted that non-washed sea sand used in reinforced concrete causes to corrode reinforcing steel and to incur cracks in concrete, and thus eventually result in damage to concrete. In this study, therefore, measeres that increase the quality of concrete were used to protect the reinforcing steel against corrosion in reinforced concrete construction, and then the corrosion resistance of reinforcing steel compared and analyzed from low quality concrete to high quality concrete.

  • PDF

Influence of Fine Aggregate on the Bleeding of Concrete (잔골재가 콘크리트의 블리딩에 미치는 영향)

  • 황인성;배정렬;심보길;전충근;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.317-322
    • /
    • 2001
  • This paper investigates the influence of fine aggregates on bleeding of concrete. According to test results, as water content decreases, crushed sand content increases, fluidity shows decline tendency. As for aggregates kinds, concrete using sea sand shows most fluidity loss among the tested results. Compressive strength gains highly when crushed sand is used. As for bleeding of concrete, bleeding shows decline tendency because of increasing in powder content and filling effect of voids. Bleeding amount is in a decreasing order of magnitude for concretes made with the following aggregates: sea sand, river sand, and crushed sand. Accordingly, crushed sand mixed with river sand and sea sand with certain proportion enable to reduce bleeding and enhance strength.

  • PDF

An Experimental Study on The Effect of Mixed Sand Used Sea and River Sand as Fine Aggregate of Concrete (해사와 강모래의 혼합재를 사용한 콘크리트에 관한 실험적 연구)

  • 남상일;김문한;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.31-36
    • /
    • 1992
  • This paper, an experimental study on the effect of mixed sand used sea and river as fine aggregate of concrete, is connected with the properties of fresh and hardended concrete and steel corrosion to investigate workability and engineering properties and general steel bar's corrosion of concrete used mixed sand. After analyzing positively fresh and hardenend concrete and ratio of the corrosion area affected by the autoclave cycle, the purpose of this paper is to provide an experimental data developing concrete used mixed sand.

  • PDF