• Title/Summary/Keyword: sculptured surface machining

Search Result 67, Processing Time 0.018 seconds

Machining Time Reduction in Rough Machining of Sculptured Surface using Filleted End Mill (필렛 엔드밀을 이용한 자유곡면 황삭가공 시간단축)

  • 신동혁;김종일;김병희;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.15-19
    • /
    • 1996
  • The cusp height in ball end milling, flat end milling and filleted end milling according to various surface inclination angle was calculated. The calculation result shows that, for each kind of tools, there exists certain range of inclination angle in which cusp height characteristics favorable. From machining time calculation, filleted end mill found to be superior to flat end mill in rough machining of sculptured surface.

  • PDF

A study on Rough machining path generation of sculptured surface by bisection method (이분법에 의한 자유곡면 황삭가공 경로산출에 관한 연구)

  • 신동혁;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.157-163
    • /
    • 1995
  • This paper presents an algorithm to deternine the tool path height for rough machining of sculptured surface. To minimize rough machining of sculptured surface, it is necessary to determine the tool path heights of contour planes. the proposed algorithm searches for the height at which maximum metal removal rate is obtained. This bisection method is accomplished until all shoulder heights are within roughing tolerance. The machining experiment demonstrates the superiority of the algorithm presented in this thesis.

  • PDF

A study on CAM System for Machining of Sculptured Surface in Mold Cavity(2) -Machining Algorithm and Construction of the System- (3차원 자유곡면 가공용 CAM시스템의 개발에 관한 연구 (2) -가공 알고리즘 및 시스템 구성-)

  • 정희원;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.54-59
    • /
    • 1995
  • In this paper, we propose unique CAM system for personal computer that can define the geometric shape in an ease manner and to machine the sculptured surfaces of a mold cavity. In this CAM system, if a user inputs simple initial information such as the control points for a shape definition and a radius of tool etc., all of the procedures for machining will be processed automatically by the CAM system as well as NC commands and simulations. In addition to this, the environment of the CAM system is composed of "C" language for an easy extention of aditional modules. Also, the CAM system with the following characteristics was developed. 1. The optimum tool path satisfying given tolerance limits reduces the time for the high precision machining of sculptured surface in a mold cavity. 2. The generated NC commands can be transmitted to NC directly by the CAM system through RS-232C from PC.C from PC.

  • PDF

A Study on the Machining of Sculptured Surfaces by 5-Axis CNC Milling (l) Cutter Axis Direction Verctor and Post-Processing (5-축 CNC 밀링으로의 자유곡면 가공에 관한 연구 (I) 공구축 방향의 벡터와 포스트 프로세싱)

  • 조현덕;전용태;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2001-2011
    • /
    • 1993
  • This study deals with the machining of sculptured surfaces on 5-axis CNC milling machine with end mill cutter. The study (I) has the following contents. In 5-axis CNC milling, CL-data consist of CC-data and cutter axis direction vector at the CC-point. Thus, in machining of the sculptured surface on 5-axis CNC milling machine, determination of the direction vector of the milling cutter is very important. The direction vector is obtained by the fact that bottom plane of the milling cutter must not interfere with the free-form surface being machined. The interference is checked by the z-map method which can be applied in all geometric types of the sculptured surfaces. After generating NC part programs from 5-axis post-processing algorithms, sculptured surfaces were machined with 5-axis CNC milling machine (CINCINNATI MILACRON, 20V-80). From these machining tests, it was shown that the machining of the free-form surfaces on 5-axis CNC milling machine with the end mill has smaller cusp heights and shorter cutting time than on 3-axis CNC milling machine with the ball-end mill. Thus, 5-axis CNC end milling was effective machining method for sculptured surfaces. The study (II) deals with the prediction of cusp height and the determination of tool path interval for the 5-axis machining of sculptured surfaces on the basis of study(I).

Optimal Tool Positions in 5-axis NC Machining of Sculptured Surface (복합곡면의 5축 NC 가공을 위한 공구자세 최척화)

  • 전차수;차경덕
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.393-402
    • /
    • 2000
  • Recently 5-axis NC machines are widely used in Korea. Since 5-axis machines have two more degrees of freedom than 3-axis machines, it is very important to find desirable tool positions(locations and orientations) in order to make an efficient use of expensive 5-axis NC machines. In this research an algorithm to determine “optimal” tool positions for 5-axis machining of sculptured surfaces is developed. For given CC(Cutter Contact) points, this algorithm determines the cutter axis vectors which minimize cusp heights and satisfy constraints. To solve the optimal problem, we deal with following major issues: (1) an approximation method of a cusp height as a measure of optimality (2) Identifying some properties of the optimal problem (3) a search method for the optimal points using the properties. By using a polyhedral model as a machining surface, this algorithm applies to sculptured surfaces covering: overhanged surface.

  • PDF

Improvement of Mold-Sculptured Surface Quality Based on Tool Shape and Posture (공구 형상 및 자세에 따른 금형 자유곡면 가공품질 향상에 관한 연구)

  • Yun, Il-Woo;Hwang, Jong-Dae;Ko, Dae-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.100-106
    • /
    • 2021
  • This paper presents a study on the improvement of the machining quality of sculptured-surfaces of molds according to the shape and posture of the tool. In the existing 3-axis machining, the methods using the ball end-mill and radius end-mill were analyzed for various cutting patterns and compared with those of the 5-axis machining. It was observed that the 5-axis machining using a ball end-mill obtained the finest surface roughness, and for the 3-axis machining, the optimal results were obtained for the one-way machining using a radius end-mill.

Optimization of Ball End Milling Feedrate considering Variation of Slopes in the CNC Machining of Sculptured Surfaces (자유곡면의 경사도에 따른 볼엔드밀링 이송속도의 최적화 연구)

  • Maeng, Hee-young;Yoon, Jang-sang
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.209-214
    • /
    • 2003
  • This study presents the analysis of ball end milling machinability and its application to the determination of the optimum feedrate in the CNC machining process of sculptured surface. The methods which estimate the cutting force system is approached experimentally. The estimation strategy, named technological processor, was applied to the machining process of sculptured surface for finding optimum variable feedrate. From the result of practical implementation for the test model, it is ascertain that the technological processor have brought the dispersion of force profiles. As compared with conventional imposing of cutting conditions, the machining time has reduced by more than 60%.

  • PDF

Estimation of Sculptured Surface NC Machining Time (자유곡면 NC 절삭가공시간 예측)

  • 허은영;김보현;김동원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.254-261
    • /
    • 2003
  • In mold and die shops, NC machining process mainly affects the quality of the machined surface and the manufacturing time of molds and dies. The estimation of NC machining time is a prerequisite to measure the machining productivity and to generate a process schedule, which generally includes the process sequence and the completion time of each process. It is required to take into account dynamic characteristics in the estimation, such as the ac/deceleration of NC machine controllers. Intensive observations at start and end points of NC blocks show that a minimum feedrate, a key variable in a machining time model, has a close relation to a block distance, an angle between blocks, and a command feedrate. Thus, this study addresses regression models for the minimum feedrate estimation on short and long NC blocks considering these parameters. Furthermore, machining time estimation models by the four types of feedrate behaviors are suggested based on the estimated minimum feedrate. To show the validity of the proposed machining time model, the study compares the estimated with the actual machining time in the sculptured surface machining of several mold dies.

A Study on the Construction of CAD/CAM system ; for Machining of Sculptured Surface of Die (금형의 자유곡면 가공용 CAD/CAM SYSTEM 구축에 관한 연구)

  • Koo, Young-Hae;Lee, Dong-Ju;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.96-105
    • /
    • 1992
  • A study on the construction of a CAD/CAM system operated by 16 Bit PC basic language, for machining sculptured surface of die, was carried out. The system consists of 2 steps i.e., process for geometric modelling by wire frame and process for machining data generation. Geometric modelling for sculptured surface is made by the point data fitting, parallel sweeping, normal sweeping and linear connection of cross section curve. Machining data are gained by cutter off-set of geometric model data and machining carried out by DNC. This system is to be proved enough for rough cutting by actual machining experiment. But, for becoming a high level system, another method of cutter off-set has to be regarded and system must be reconstructed by another program language.

  • PDF

Interference-Free Tool Approach Directions in Multi-Axis NC Machining of Sculptured Surfaces (자유 곡면의 다축 NC 가공시 간섭 없는 공구 접근 자세 영역)

  • J.G. Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.108-115
    • /
    • 1997
  • In this paper, an algorithm of computing interference-free tool approach directions(visibility cone) with consideration of tool volume at an arbitrary point of a sculptured surface is developed. The surface is first approximated into a polyhedron with smaller subpatches and the tool approach directions are evenly sampled so as to test accessibility. Then the visibility cone is computed by testing if each approach direction is interfered by other surface subpatches. The results are represented as the binary spherical map which transform geometric information on sphere into aogebraic one. The developed algorithm is implemented and tested by several sculptured surfaces, convincing it can be easily used as a tool for not only interference- free tool approach directions but also determining process planning of multi-axis NC machining of sculp- tured surfaces

  • PDF